參考文獻 |
[1] W. Raghupathi and V. Raghupathi, "Big data analytics in healthcare: promise and potential," Health information science and systems, vol. 2, no. 1, p. 3, 2014.
[2] H. C. Koh and G. Tan, "Data mining applications in healthcare," Journal of healthcare information management, vol. 19, no. 2, p. 65, 2011.
[3] L. D. Xu and L. Duan, "Big data for cyber physical systems in industry 4.0: a survey," Enterprise Information Systems, vol. 13, no. 2, pp. 148-169, 2019.
[4] H. Chen, R. H. Chiang, and V. C. Storey, "BUSINESS INTELLIGENCE AND ANALYTICS: FROM BIG DATA TO BIG IMPACT," MIS Quarterly, vol. 36, no. 4, pp. 1165-1188, 2012.
[5] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining to knowledge discovery in databases," AI magazine, vol. 17, no. 3, pp. 37-37, 1996.
[6] A. Famili, W.-M. Shen, R. Weber, and E. Simoudis, "Data Preprocessing and Intelligent Data Analysis," Intelligent Data Analysis, vol. 1, no. 1, pp. 3-23, 1997.
[7] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, "A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4, pp. 463-484, 2011.
[8] Y. Sun, A. K. Wong, and M. S. Kamel, "Classification of imbalanced data: A review," International journal of pattern recognition and artificial intelligence, vol. 23, no. 04, pp. 687-719, 2009.
[9] H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Transactions on knowledge and data engineering, vol. 21, no. 9, pp. 1263-1284, 2009.
[10] Q. Yang and X. Wu, "10 Challenging Problems In Data Mining Research," International Journal of Information Technology & Decision Making (IJITDM), vol. 5, no. 04, pp. 597-604, 2006.
[11] N. V. Chawla, N. Japkowicz, and A. Kotcz, "Special issue on learning from imbalanced data sets," ACM SIGKDD explorations newsletter, vol. 6, no. 1, pp. 1-6, 2004.
[12] S. S. Khan and M. G. Madden, "A survey of recent trends in one class classification," in Irish conference on artificial intelligence and cognitive science, 2009, pp. 188-197: Springer.
[13] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, "Data preprocessing for supervised leaning," International Journal of Computer Science, vol. 1, no. 2, pp. 111-117, 2006.
[14] R. Polikar, "Ensemble learning," in Ensemble machine learning: Springer, 2012, pp. 1-34.
[15] S. Wang and X. Yao, "Multiclass imbalance problems: Analysis and potential solutions," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1119-1130, 2012.
[16] R. C. Prati, G. E. Batista, and M. C. Monard, "Class imbalances versus class overlapping: an analysis of a learning system behavior," in Mexican international conference on artificial intelligence, 2004, pp. 312-321: Springer.
[17] N. Japkowicz and S. Stephen, "The class imbalance problem: A systematic study," Intelligent data analysis, vol. 6, no. 5, pp. 429-449, 2002.
[18] T. Jo and N. Japkowicz, "Class imbalances versus small disjuncts," ACM Sigkdd Explorations Newsletter, vol. 6, no. 1, pp. 40-49, 2004.
[19] J. M. Johnson and T. M. Khoshgoftaar, "Survey on deep learning with class imbalance," Journal of Big Data, vol. 6, no. 1, p. 27, 2019.
[20] G. M. Weiss, "Mining with rarity: a unifying framework," ACM Sigkdd Explorations Newsletter, vol. 6, no. 1, pp. 7-19, 2004.
[21] W. W. Cohen, "Fast effective rule induction," in Machine learning proceedings 1995: Elsevier, 1995, pp. 115-123.
[22] B. Raskutti and A. Kowalczyk, "Extreme re-balancing for SVMs: a case study," ACM Sigkdd Explorations Newsletter, vol. 6, no. 1, pp. 60-69, 2004.
[23] P. Langley, "Selection of relevant features in machine learning," in Proceedings of the AAAI Fall symposium on relevance, 1994, vol. 184, pp. 245-271.
[24] H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Transactions on knowledge and data engineering, vol. 17, no. 4, pp. 491-502, 2005.
[25] M. Dash and H. Liu, "Feature selection for classification," Intelligent data analysis, vol. 1, no. 3, pp. 131-156, 1997.
[26] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of machine learning research, vol. 3, no. Mar, pp. 1157-1182, 2003.
[27] R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.
[28] J. Yang and V. Honavar, "Feature subset selection using a genetic algorithm," in Feature extraction, construction and selection: Springer, 1998, pp. 117-136.
[29] H. Abdi and L. J. Williams, "Principal component analysis," Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433-459, 2010.
[30] L. Yu and H. Liu, "Feature selection for high-dimensional data: A fast correlation-based filter solution," in Proceedings of the 20th international conference on machine learning (ICML-03), 2003, pp. 856-863.
[31] Z. Zhao and H. Liu, "Searching for interacting features in subset selection," Intelligent Data Analysis, vol. 13, no. 2, pp. 207-228, 2009.
[32] J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, no. 1, pp. 81-106, 1986.
[33] J. R. Quinlan, "C4. 5: Programs for Machine Learning," 1993.
[34] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees. CRC press, 1984.
[35] J. Tang, S. Alelyani, and H. Liu, "Feature selection for classification: A review," Data classification: Algorithms and applications, p. 37, 2014.
[36] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
[37] Y. Chtioui, D. Bertrand, and D. Barba, "Feature selection by a genetic algorithm. Application to seed discrimination by artificial vision," Journal of the Science of Food and Agriculture, vol. 76, no. 1, pp. 77-86, 1998.
[38] S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier methodology," IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3, pp. 660-674, 1991.
[39] B. Hssina, A. Merbouha, H. Ezzikouri, and M. Erritali, "A comparative study of decision tree ID3 and C4. 5," International Journal of Advanced Computer Science and Applications, vol. 4, no. 2, pp. 13-19, 2014.
[40] J. Mingers, "An empirical comparison of pruning methods for decision tree induction," Machine learning, vol. 4, no. 2, pp. 227-243, 1989.
[41] S. Ghosh and D. L. Reilly, "Credit card fraud detection with a neural-network," in System Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii International Conference on, 1994, vol. 3, pp. 621-630: IEEE.
[42] R. Brause, T. Langsdorf, and M. Hepp, "Neural data mining for credit card fraud detection," in Proceedings 11th international conference on tools with artificial intelligence, 1999, pp. 103-106: IEEE.
[43] W. Lee and D. Xiang, "Information-theoretic measures for anomaly detection," in Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001, 2000, pp. 130-143: IEEE.
[44] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1-58, 2009.
[45] V. Hodge and J. Austin, "A survey of outlier detection methodologies," Artificial intelligence review, vol. 22, no. 2, pp. 85-126, 2004.
[46] X. Wu et al., "Top 10 algorithms in data mining," Knowledge and information systems, vol. 14, no. 1, pp. 1-37, 2008.
[47] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, "A comparative evaluation of outlier detection algorithms: Experiments and analyses," Pattern Recognition, vol. 74, pp. 406-421, 2018.
[48] F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation-based anomaly detection," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 6, no. 1, pp. 1-39, 2012.
[49] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the support of a high-dimensional distribution," Neural computation, vol. 13, no. 7, pp. 1443-1471, 2001.
[50] Y. Guerbai, Y. Chibani, and B. Hadjadji, "The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters," Pattern Recognition, vol. 48, no. 1, pp. 103-113, 2015.
[51] F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation forest," in 2008 Eighth IEEE International Conference on Data Mining, 2008, pp. 413-422: IEEE.
[52] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, "Reputation-based framework for high integrity sensor networks," ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 3, pp. 1-37, 2008.
[53] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, "LOF: identifying density-based local outliers," in Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, pp. 93-104.
[54] T. G. Dietterich, "Ensemble methods in machine learning," in International workshop on multiple classifier systems, 2000, pp. 1-15: Springer.
[55] L. Rokach, "Ensemble-based classifiers," Artificial Intelligence Review, vol. 33, no. 1-2, pp. 1-39, 2010.
[56] A. Lazarevic and V. Kumar, "Feature bagging for outlier detection," in Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, 2005, pp. 157-166.
[57] C. C. Aggarwal, "Outlier analysis," in Data mining, 2015, pp. 237-263: Springer.
[58] J. R. Koza, "Survey of genetic algorithms and genetic programming," in Wescon conference record, 1995, pp. 589-594: WESTERN PERIODICALS COMPANY.
[59] J. J. Grefenstette, "Optimization of control parameters for genetic algorithms," IEEE Transactions on systems, man, and cybernetics, vol. 16, no. 1, pp. 122-128, 1986.
[60] A. Venkatachalam, "M-InfoSift: A Graph-based Approach for Multiclass Document Classification," 2007.
[61] T. Fawcett, "An introduction to ROC analysis," Pattern recognition letters, vol. 27, no. 8, pp. 861-874, 2006.
[62] C.-F. Tsai, W.-C. Lin, Y.-H. Hu, and G.-T. Yao, "Under-sampling class imbalanced datasets by combining clustering analysis and instance selection," Information Sciences, vol. 477, pp. 47-54, 2019. |