博碩士論文 107521074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.129.216.30
姓名 邱信豪(Hsin-Hao Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於共同空間型樣之黎曼普氏分析法用於想像運動之腦波分類
(Classification of Motor Imagery EEG Signals Using CSP-RPA)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-23以後開放)
摘要(中) 本篇論文以黎曼幾何空間為基礎,提出了一種解決腦波數據非平穩性
的方法,提高跨時段(Cross-sessions)及跨受試者(Cross-subjects)在想像運動
上的分類性能。腦波訊號普遍存在著不平穩(Non-stationary)的特性,即其數
據分布隨著時間變化,而這個特性使得腦波在想像運動的分類上受到限制。
在想像運動腦波錄製過程中,由於受測者不同或受測者錄製腦波的時間、環
境不同,導致腦電訊號之間存在巨大差異,造成想像運動分類準確率不佳。
在傳統腦機介面中,雖然此情況可透過大量收集受測者的腦波資料以進行
校準,然而這將導致系統必須花費過長的校準時間以保持原有的分類準確
率。而腦機介面領域中的遷移學習方法,將可以藉由源域的資料應用於目標
域的資料中,因此,可以減少大量錄製腦波資料所需要的時間。本篇主要研
究內容如下:本論文提出CSP-RPA 方法,以黎曼幾何空間之切線空間作為
基礎,結合共同空間型樣法(Common Spatial Pattern, CSP)將不同類別之資料
事先盡可能區分開後以改良現有黎曼普氏分析架構,並且利用基於樹的特
徵選擇(Tree-based Feature Selection)方式,以減少對於少量腦波數據的特徵
維度過高所造成的過擬合(Over-fitting)情況,進而提升腦電訊號想像運動分
類的效果,最後透過BCI 競賽所提供的腦電訊號數據集驗證其演算法之有
效性,並利用t-SNE 視覺化以證明其特徵領域自適應之效果。
摘要(英) This thesis presents a transfer learning method based on Riemannian
geometry for improving the classification accuracy of Electroencephalographic
(EEG) signals. Non-stationarities are ubiquitous in EEG signals, which means the
statistical characteristics of EEG signals alter from time to time. The nonstationarities
of the EEG signals may be caused by different environmental factors
(e.g. user’s fatigue level, the mental and physical state of user, the location of
electrodes placement, etc.). Typically, classic Motor Imagery-based Brain-
Computer Interface (MI-based BCI) requires a calibration session in each run,
even for recorded subjects. During the calibration session, the subjects requested
to perform various Motor Imagery (MI) tasks repeatedly, which will be timeconsuming
and make user feel exhausted. As a consequence, we proposed a
transfer learning method, namely Common Spatial Pattern Riemannian Procrustes
Analysis (CSP-RPA), to shorten the calibration time while keeping MI-based BCI
work optimally. CSP-RPA is based on the tangent space of Riemannian geometric
spaces and combines the Common Spatial Pattern (CSP) method to modify the
Riemannian Procrustes Analysis (RPA) architecture. To alleviate the overfitting
in high-dimensional Riemannian manifold, the tree-based feature selection is
adopted to reduce the dimensionality after mapping data from Riemannian
manifold to tangent space. The framework was validated by the publicly available
EEG dataset 2a of the BCI competition IV. In addition, we used t-SNE (t-
Distributed Stochastic Neighbor Embedding) to visualize and prove the
effectiveness of feature domain adaptation after CSP-RPA algorithm. To sum up,
the experimental results indicate that CSP-RPA is superior to other methods, e.g.,
Re-center, Parallel Transport, RPA, under cross-sessions and cross-subjects
conditions.
關鍵字(中) ★ 腦電圖
★ 想像運動
★ 黎曼幾何
★ 切線空間
★ 普氏分析
★ 領域自適應
關鍵字(英) ★ Electroencephalographic
★ Motor Imagery
★ Riemannian geometry
★ tangent space
★ domain adaptation
★ transfer learning
論文目次 摘要 ........................................................................................................................ I
Abstract ................................................................................................................ II
致謝 ..................................................................................................................... III
目錄 ..................................................................................................................... IV
圖目錄 ................................................................................................................. VI
表目錄 .................................................................................................................. X
第一章 緒論 ......................................................................................................... 1
1-1 前言 ........................................................................................................ 1
1-2 研究動機與目的 ................................................................................... 2
1-3 文獻回顧 ................................................................................................ 3
1-4 內容大綱 ................................................................................................ 5
第二章 腦電訊號 ................................................................................................. 6
2-1 腦機介面 ................................................................................................ 6
2-2 想像運動 ................................................................................................ 7
2-3 大腦活動區 ............................................................................................ 8
2-4 遷移學習於腦機介面領域之研究發展 ............................................... 9
第三章 黎曼幾何 ............................................................................................... 11
3-1 黎曼幾何 .............................................................................................. 11
3-1-1 前言 .......................................................................................... 11
3-1-2 對稱正定矩陣定義與特性 ...................................................... 12
3-1-3 黎曼指數/對數投影 ................................................................. 13
3-1-4 黎曼幾何距離 .......................................................................... 17
3-1-5 黎曼均值 .................................................................................. 18
3-2 黎曼普氏分析法 ................................................................................. 20
3-3 CSP-RPA 設計與實現 .......................................................................... 27
3-3-1 共同空間型樣法(Common Spatial Pattern, CSP) ................... 27
3-3-2 黎曼切線空間 .......................................................................... 30
3-3-3 共同空間型樣黎曼普氏分析法 .............................................. 32
第四章 實驗結果與討論 ................................................................................... 38
4-1 腦波資料 .............................................................................................. 38
4-1-1 BCI 競賽 IV IIa ....................................................................... 38
4-1-2 t-SNE 視覺化 ............................................................................ 40
4-2 跨時段遷移學習之實驗結果 ............................................................. 43
4-3 跨受試者遷移學習之實驗結果 ......................................................... 61
第五章 結論與未來展望 ................................................................................... 75
參考文獻 ............................................................................................................. 77
參考文獻 [1] M. Krauledat, M. Tangermann, B. Blankertz, and K.-R. Muller, “Towards
zero training for brain-computer interfacing,” PLoS One, vol. 3, no. 8, pp.
1-12, 2008.
[2] S. Fazli, F. Popescu, M. Danoczy, B. Blankertz, K.-R. Muller, and C. Grozea,
“Subject independent mental state classification in single trials,” Neural
Networks, vol. 22, no. 9, pp. 1305-1312, 2009.
[3] F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCI designs: Unified theory and new algorithms,” IEEE Transactions on
Biomedical Engineering, vol. 58, no. 2, pp. 355-362, 2011.
[4] A. Barachant, S. Bonnent, M. Congedo, and C. Jutten, “Multiclass braincomputer
interface classification by Riemannian geometry,” IEEE
Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920-928, 2012.
[5] H. Raza, D. Rathee, S. -M. Zhou, H. Cecotti, and G. Prasad, “Covariate shift
estimation based adaptive ensemble learning for handling non-stationarity
in motor imagery related EEG-based brain-computer interface,”
Neurocomputing, vol. 343, pp. 154-166, 2019.
[6] P. L. C. Rodrigues, C. Jutten, and M. Congedo, “Riemannian procrustes
analysis: Transfer learning for brain-computer interfaces,” IEEE
Transactions on Biomedical Engineering, vol. 66, no. 8, pp. 2390-2401,
2019.
[7] C. Brunner, R. Leeb, G. Muller-Putz, A. Schlogl, and G. Pfurtscheller, “BCI
competition 2008- Graz data set A,” Institute for Knowledge Discovery
(Laboratory of Brain-Computer Interfaces), Graz University of Technology,
pp 136-142, 2008.
[8] P. Zanini, M. Congedo, C. Jutten, S. Said, and Y. Berthoumieu, “Transfer
learning: A Riemannian geometry framework with applications to braincomputer
interfaces,” IEEE Transactions on Biomedical Engineering, vol.
65, no. 5, pp. 1107-1116, 2018.
[9] O. Yair, M. Ben-Chen, and R. Talmon, “Parallel transport on the cone
manifold of SPD matrices for domain adaptation,” IEEE Transactions on
Signal Processing, vol. 67, no. 7, pp. 1797-1811, 2019.
[10] A. Barachant, S. Bonnet, M. Congedo, and C.Jutten, “Classification of
covariance matrices using a Riemannian-based kernel for BCI applications,”
Neurocomputing, vol. 112, pp. 172-178, 2013.
[11] F. Yger, M. Berar, and F. Lotte, “Riemannian approaches in brain-computer
interfaces: A review,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 25, no. 15, pp.175.-1762, 2018.
[12] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, pp. 2579-2605, 2008.
[13] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imagined hand movement,” IEEE
Transactions on Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446,
2000.
[14] X. Xie, Z. L. Yu, H. Lu, Z. Gu, and Y. Li, “Motor imagery classification
based on bilinear sub-manifold learning of symmetric positive-definite
matrices,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 25, no. 6, pp. 504-516, 2016.
[15] H. Morioka, A. Kanemura, J. Hirayama, M. Shikauchi, T.Ogawa, S. Ikeda,
M. Kawandabe, and S. Ishii, “Learning a common dictionary for subject transfer decoding with resting calibration,” NeuroImage, vol. 111, pp. 167-
178, 2015.
[16] A. M. Azab, L. Mihaylova, K. K. Ang, and M. Arvaneh, “Weighted transfer
learning for improving motor imagery-based brain-computer interface,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.
27, no. 7, pp. 1352-1359, 2019.
[17] A. Y. Kaplan, A. A. Fingelkurts, A. A. Fingelkurts, S. V. Borisov, and B. S.
Darkhovsky, “Nonstationary nature of the brain activity as revealed by
EEG/ MEG: Methodological, practical and conceptual challenges,” Signal
Process., vol. 85, no. 11, pp. 2190-2212, 2005.
[18] P. Shenoy, M. Krauledat, B. Blankertz R.P.N. Rao, and K.-R. Müller,
“Towards adaptive classification for BCI,” J. Neural Eng., vol. 3, no. 1, pp.
R13-R26, 2006.
[19] H. Raza, D. Rathee, S.-M. Zhou, H. Cecotti, and G. Prasad, “Covariate shift
estimation based adaptive ensemble learning for handling non-stationarity
in motor imagery related EEG-based brain-computer interface,”
Neurocomputing, vol. 343, pp. 154-166, 2019.
[20] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-computer
communication,” Proc. IEEE, vol. 89, no. 7, pp. 1123-1134, 2001.
[21] J. del R. Millán, F. Renkens, J. Mouriño, and W. Gerstner, “Non-invasive
brain-actuated control of a mobile robot by human EEG,” IEEE Trans.
Biomed. Eng., vol. 51, no. 6, pp. 1026-1033, 2004.
[22] M. Cheng, X. Gao, and S. Gao, “Design and implementation of a braincomputer
interface with high transfer rates,” IEEE Trans. Biomed. Eng., vol.
49, no. 10, pp. 1181-1186, 2002.
[23] R. Panicker, S. Puthusserypady, and Y. Sun, “An asynchronous P300 BCI
with SSVEP-based control state detection,” IEEE Trans. Biomed. Eng., vol.
58, no. 6, pp. 1781-1788, 2011.
[24] N. Sharma, V. M. Pomeroy, and J-C. Baron, “Motor imagery: A backdoor
to the motor system after stroke?” Stroke, pp. 1941-1952, 2006.
[25] H. H. Ehrsson, S. Geyer, and E. Naito, “Imagery of voluntary movement of
fingers, toes, and tongue activates corresponding body-part-specific motor
representations,” J. Neurophysiol., vol. 90, pp. 3304-3316, 2003.
[26] E. Iánez, J. M. Azorín, A. Úbeda, J. Ferrández, and E. Fernández, “Mental
tasks-based brain-robot interface,” Robot. Autonom. Syst., vol. 58, no. 12,
pp. 1238-1245, 2010.
[27] J. Long, Y. Li, H. Wang, T. Yu, J. Pan, and F. Li, “A hybrid brain computer
interface to control the direction and speed of a simulated or real wheelchair,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 5, pp. 720-729, 2012.
[28] A. Nourmohammadi, M. Jafari, and T. O. Zander, “A survey on unmanned
aerial vehicle remote control using brain-computer interface,” IEEE
Transactions on Human-Machine Systems, vol. 48, no. 4, pp. 337-348, 2018.
[29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345-1359, 2010.
[30] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
J. Big Data, vol. 3, no. 1, pp. 1-40, 2016.
[31] W. Förstner and B. Moonen, “A metric for covariance matrices,” Technical
Report, Dept. of Geodesy and Geoinformatics, Stuttgart Univ., 1999.
[32] P. T. Fletcher and S. Joshi, “Principal geodesic analysis on symmetric
spaces: Statistics of diffusion tensors,” Proc. Comput. Vis. Math. Methods
Med. Biomed. Image Anal., 2004, pp. 87-98.
[33] R. Bhatia, Positive Definite Matrices. Princeton Univ. Press, 2007.
[34] M. Moakher, “A differential geometric approach to the geometric mean of
symmetric positive-definite matrices,” SIAM J. Matrix Analysis and
Applications, vol. 26, pp. 735-747, 2005.
[35] J. C. Gower and G. B. Dijksterhuis, Procrustes Problems. Oxford
University Press, vol. 3, 2004.
[36] Z. J. Koles, “The quantitative extraction and topographic mapping of the
abnormal components in the clinical EEG,” Electroenc. Clin. Neurophys.,
vol. 79, pp. 440-447, 1991.
[37] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Riemannian
geometry applied to BCI classification,” in Latent Variable Analysis and
Signal Separation. Berlin, Germany: Springer-Verlag, 2010, pp. 629-636.
[38] V. Jayaram, M. Alamgir, Y. Altun, B. Scholkopf, and M. Grosse-Wentrup,
“Transfer learning in brain-computer interface,” IEEE Comput. Intell. Mag.,
vol. 11, no. 1, pp. 22-30, 2016.
[39] F. Lotte et al., “A review of classification algorithms for EEG-based braincomputer
interfaces: A 10 year update,” J. Neural Eng., vol. 15, no. 3, 2018,
Art. No. 031005.
指導教授 徐國鎧 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明