博碩士論文 106521107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.141.7.130
姓名 王詠樂(Yong-Le Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 線性度改善之微波及毫米波二極體切換器與混波器之研製
(Design of Microwave/Millimeter-Wave Diode Switch and Mixer for Improving Linearity)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-17以後開放)
摘要(中) 本論文主要為設計收發機前端之二極體切換器及功率放大器線性度改善系統之降頻器。切換器是射頻收發機前端重要的電路,控制訊號接收與發射,並針對二極體切換器線性度改善。混波器為功率放大器線性度改善系統的前端子電路,由於現代通訊發展迅速,第五代動通訊頻率越來越高頻,越高頻傳輸速度越快,損耗也越大。其功率放大器的線性度極為重要,所以提出此方式來提高功率放大器線性度。
第一章為論文的緒論。第二章首先使用Broadcom Limited公司製造之二極體實作於印刷電路板,電路包含串並式單刀單擲切換器、串聯串並式單刀單擲切換器、並聯串並式單刀單擲切換器。根據三種不同串並式單刀單擲切換器架構,可以觀察到串聯與並聯二極體,對於切換器插入損耗、隔離度、線性度的影響。切換器的線性度會因為輸入功率過高,導致二極體導通、線性度降低,根據其狀況提出反接式單刀單擲切換器,利用給予直流偏壓方式,有效抑制二極體導通。最後為使用1/4波長傳輸線設計單刀雙擲切換器,切換器為關閉狀態時,利用給予負偏壓方式可以有效抑制二極體導通,增加切換器線性度。
第三章則延續第二章,使用穩懋PIN-HEMT製程設計,電路包含反接串並式單刀單擲切換及使用1/4波長傳輸線設計單刀雙擲切換器,將其第二章驗證結果應用於晶片設計,根據模擬結果可以觀察出反接式與負偏壓方式,皆可有效改善線性度。
第四章為應用於功率放大器線性度改善系統之降頻器電路,使用台積電 65 nm CMOS製程與0.18 μm CMOS製程設計一個S頻段降頻器,分別使用電流注入與主動負載方式提高轉換增益所需的負載。其降頻器需要將射頻輸入功率及本地振盪功率同時輸入,所以在本地振盪輸入端加上反相器,降低本地振盪輸入功率。
最後於第五章總結本篇論文所提出之電路與未來研究方向。
摘要(英) In this thesis, a front-end diode switch and power amplifier analog linearized front-end circuit mixer. The switch is an important circuit in the front end of the RF transceiver, which controls signal reception and transmission, and improves and applies the linearity of the diode switch. The mixer is an analog linearized front terminal circuit of the power amplifier. Due to the rapid development of modern communication, the frequency of the fifth-generation dynamic communication is getting higher and higher. The higher the frequency, the faster the transmission speed and the greater the loss. The linearity of the power amplifier is extremely important, so this method is proposed to improve the linearity of the power amplifier.
The first chapter is the introduction of the thesis. The second chapter first uses diodes manufactured by Broadcom Limited to implement on the printed circuit board. The circuit includes series-shunt SPST switch, serial series-shunt SPST switch, parallel series-shunt SPST switch. According to three different series-shunt SPST switch architectures, the effects of series and parallel diodes on the insertion loss, isolation, and linearity of the switch can be observed. The linearity of the switch will cause the diode to be turned on and the linearity will be reduced due to the high input power. According to the situation, a reverse-connected SPST switch is proposed. The DC bias method is used to effectively suppress the diode conduction. Finally, a SPDT switch is designed to use the 1/4λ transmission line. When the switch is off, the negative bias can be used to effectively suppress the diode conduction and increase the linearity of the switch.
The third chapter continues the second chapter, using the WIN PIN-HEMT process design, the circuit includes reverse SPST switching and the use of 1/4λ transmission line design SPDT switch, the verification results of the second chapter used in chip design, according to the simulation results, it can be observed that the reverse connection type and the negative bias method can effectively improve the linearity.
Chapter 4 is a front-end mixer circuit applied to analog linearization circuits of power amplifiers. Using TSMC 65 nm CMOS process and 0.18 μm CMOS process to design an S-band mixer, which uses current injection and active load to improve conversion, the load required for conversion gain. The mixer needs to input the RF input power and the local oscillation power at the same time, so we added an inverter to the local oscillation input to reduce the local oscillation input power.
Finally, the conclusions and future works are addressed in Chapter 5.
關鍵字(中) ★ 切換器
★ 混頻器
★ CMOS
★ PIN二極體
★ 線性度
關鍵字(英) ★ Switch
★ Mixer
★ CMOS
★ PIN-Diode
★ Linearity
論文目次 摘要 VIII
Abstract X
致謝 XII
目錄 XIV
圖目錄 XVII
表目錄 XXIII
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 2
1.3 論文貢獻 3
1.4 論文架構 4
第二章 微波二極體切換器 5
2.1 簡介 5
2.2 電路設計與分析 5
2.2.1 串並式單刀單擲切換器 7
2.2.2 串聯串並式單刀單擲切換器 9
2.2.3 並聯串並式單刀單擲切換器 12
2.2.4 反接串並式單刀單擲切換器 14
2.2.5 1/4波長傳輸線設計單刀雙擲切換器 16
2.3 電路模擬與量測 17
2.3.1 串並式單刀單擲切換器 18
2.3.2 串聯串並式單刀單擲切換器 23
2.3.3 並聯串並式單刀單擲切換器 27
2.3.4 反接串並式單刀單擲切換器 32
2.3.5 1/4波長傳輸線設計單刀雙擲切換器 36
2.4 結論 40
第三章 微波及毫米波PIN二極體切換器 43
3.1 簡介 43
3.2 製程簡介 43
3.3 電路設計與分析 43
3.3.1 反接串並式單刀單擲切換器 46
3.4.1 1/4波長傳輸線反接式單刀雙擲切換器 49
3.4 電路模擬結果 52
3.3.2 反接串並式單刀單擲切換器 52
3.4.2 1/4波長傳輸線反接式單刀雙擲切換器 57
3.5 結論 61
第四章 功率放大器線性度改善系統之降頻器 63
4.1 簡介 63
4.2 製程簡介 65
4.2.1. 台積電 65 nm CMOS 製程 65
4.2.2. 台積電 0.18 μm CMOS 製程 65
4.3 電路設計與分析 65
4.3.1. 電流注入吉伯爾混波器 68
4.3.2. 主動負載吉伯爾混波器 71
4.4 電路模擬與量測 75
4.4.1. 電流注入吉伯爾混波器 75
4.4.2. 主動負載吉伯爾混波器 80
4.5 結論 85
第五章 結論 87
參考文獻 89
參考文獻 [1] A. Colquhoun and L. P. Schmidt, “MMICs for automotive and traffic applications,” GaAs IC Symposium Technical Digest 1992, Miami Beach, FL, USA, 1992, pp. 3-6.
[2] T. Buber, F. Kolak, N. Kinayman and J. Bennett, “A low-loss high-isolation absorptive GaAs SPDT PIN switch for 24 GHz automotive applications,” Radio and Wireless Conference, 2003. RAWCON ′03. Proceedings, Boston, MA, 2003, pp. 349-352.
[3] P. Song, R. L. Schmid, A. Ç. Ulusoy, and J. D. Cressler, “A high-power, low-loss W-band SPDT switch using SiGe PIN diodes,” 2014 IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2014, pp. 195-198.
[4] J.-E. Mueller, A. Bangert et.al., “A GaAs HEMT MMIC chip set for automotive radar systems fabricated by optical stepper lithography,” 1997 GaAs IC Symp., pp. 189-192.
[5] J. Putnam, M. Fukuda, P. Staecker, Y-H. Yun, “A 94 GHz monolithic switch with a vertical PIN diode structure”, IEEE 1994 GaAs IC Symp., pp. 333-336.
[6] 林祥,「微波多相位時脈產生器與PIN 二極體應用於毫米波切換器及調變器」,國立中央大學,碩士論文,民國106年。
[7] N. A. Talwalkar, C. P. Yue, H. Gan and S. S. Wong, “Integrated CMOS transmit-receive switch using LC-tuned substrate bias for 2.4Ghz and 5.2Ghz applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 6, Jun. 2004.
[8] M. C. Yeh et al., “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 31-39, Jan. 2006.
[9] L. Wang et al., “Highly linear Ku-band SiGe PIN diode phase shifter in standard SiGe BiCMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 37–39, Jan. 2010.
[10] 杜至庸,「線性化射頻功率放大器之數位基頻預失真技術之研究」,國立中山大學,碩士論文,民國96年。
[11] 華人百科, “功率退回,” Available: https://www.itsfun.com.tw/%E5%8A%9F%E7%8E%87% E5%9B%9E%E9%80%80/wiki-527435-120505
[12] 戴光廷,「用於非線性功率放大器之查表數位預失真技術」,國立交通大學,碩士論文,民國103年。
[13] 陳貴強、甘體國、喻志遠。功率放大器的自適應預失真線性化技術。電訊技術,2003。
[14] P.-B. Kenington, “High-Linearity RF Amplifier Design,” Norwood, MA: Artech House, 2000.
[15] S.-C. Cripps, “RF Power Amplifiers for Wireless Communications,” Norwood, MA: Artech House, 1999.
[16] B. Shi and L. Sundstrom, “Linearization of RF power amplifiers using power feedback,” in IEEE 49th Vehicular Technology Conf., 1999, pp.1520-1524.
[17] M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Veh. Technol., vol. 47, pp. 209-215, Feb. 1998.
[18] S. P. Stapleton, “Amplifier linearization using adaptive digital predistortion,” Applied Microwave Wireless, vol. 13, pp. 72-77, Feb. 2001.
[19] S. Boumaiza and F.-M. Ghannouchi, “Realistic power-amplifiers characterization with applcation to baseband digital predistortion for 3G base stations,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 3016-3021, Dec. 2002.
[20] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha, and B. Kim, “An adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, pp. 22-44, April 2003.
[21] J.-K. Cavers, “Adaptive behavior of a feedforward amplifier linearizer,” IEEE Trans. Veh. Technol., vol. 44, pp. 31-40, Feb. 1996.
[22] Mini-Circuits, Brooklyn, NY, USA. ZMSW-1111, Coaxial Switch: 50Ω SPST Pin Diode Reflective 10 to 2500 MHz, Datasheet, accessed on Sep. 2016, [Online]. Available: https://www.minicircuits.com/pdfs/ZMSW-1111.pdf
[23] S.-F. Chao and W.-C. Lin, “High-isolation switchable bandpass filter using connected-coupling line,” Electron. Lett., vol. 49, no. 16, pp. 1004–1005, Aug. 2013.
[24] X. Y. Zhang, J.-X. Xu, and J.-X. Chen, “High-power filtering switch with low loss and high isolation based on dielectric resonator,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 6, pp. 2101–2110, Jun. 2017.
[25] Skyworks Solutions, Inc. SKY13348-374LF: 0.5 to 6.0 GHz SPDT Switch, 50Ω Terminated Datasheet, accessed on Nov. 11, 2013. [Online]. Available: https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/501-600/SKY13348_374LF_201214F.pdf
[26] RF Micro Devices, Inc. RFSW8000: 2.5V to 5.0V, 5MHz to 6500MHz 10W SPDT Switch Datasheet, accessed on Oct. 2015. [Online]. Available: http://www.rfmd.com/store/ downloads/ dl/file/id/27614/RFSW8000DS.pdf
[27] C. M. Hu et al., “Design of an RF transmit/receive switch using LDMOSFETs with high power capability and low insertion loss,” IEEE Trans. Electron Devices, vol. 58, no. 6, pp. 1722–1727, Jun. 2011.
[28] C.-S. Chen and Y.-S. Lin, “Single-pole double-throw switchable diplexer and single-pole quadruple-throw switchable quadplexer using capacitively loaded multi-coupled line,” Microw., Antennas Propag., vol. 9, no. 14, pp. 1547–1557, Nov. 2015.
[29] C.-S. Chen, J.-F. Wu, Y.-S. Lin, “Compact single-pole-double-throw switchable bandpass filter based on multi-coupled line,” IEEE Microw. Wireless Compon. Lett., 2014, 24, (2), pp. 87–89
[30] P. Sun, P. Liu, P. Upadhyaya, D. Jeong, D. Heo, E. Mina, “Silicon-Based PIN SPST RF Switches for Improved Linearity,” IEEE MTT-S International Microwave Symposium, pp. 948-951, 2010.
[31] W. Wu, S. Lam, and M. Chan, “A wide-band T/R switch using enhanced compact Waffle MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 287–289, May 2006.
[32] W.-T. Fang, C.-H. Chen, and Y.-S. Lin, ‘‘2.4-GHz absorptive MMIC switch for switched beamformer application,’’ IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp. 3950–3961, Apr. 2017.
[33] M. Davulcu, E. Özeren, M. Kaynak and Y. Gurbuz, ‘‘A New 5–13 GHz Slow-Wave SPDT Switch with Reverse-Saturated SiGe HBTs,’’ IEEE Microw. Wireless Compon. Letters, vol. 27, no. 6, pp. 581-583, June 2017.
[34] N. Billström, J. Nilsson, A. Tengs and N. Rorsman, ‘‘High performance GaN front-end MMICs,’’ 2011 6th European Microwave Integrated Circuit Conference, Manchester, 2011, pp. 348-351.
[35] L. Zhao, W. F. Liang, J. Y. Zhou and X. Jiang, "Compact 35–70 GHz SPDT Switch With High Isolation for High Power Application," IEEE Microw. Wireless Compon. Letters, vol. 27, no. 5, pp. 485-487, May 2017.
[36] J. G. Yang and K. Yang, “High-Linearity K-Band Absorptive-Type MMIC Switch Using GaN PIN-Diodes,” IEEE Microw. Wireless Compon. Lett., vol. 23, NO. 1, Jan 2013.
[37] W. Lee and S. Hong, “Low-loss and small-size 28 GHz CMOS SPDT switches using switched inductor,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2018, pp. 148–151.
[38] 劉育誠、沈稚鈞。2020。線性度改善系統及線性度改善方法。中華民國專利號I696344。
[39] Proctor. JR, J. Arthur, “Aliased wide band performance monitor for adjusting predistortion and vector modulator control parameters of RF amplifier,” U.S. Patent No. 6078216.
[40] A.-P. Hulbert, “SUPPRESSION CIRCUIT FOR SUPPRESSING UNWANTED TRANSMITTER OUTPUT,” U.S. Patent No. 20140232468A1.
[41] A. Langer, “Adjusting Power Amplifier Stimuli Based on Output Signals,” U.S. Patent No. US20160277045A1.
[42] Behzad Razavi, “RF Microelectronics 2nd Edition”, Prentice-Hall, 2011.
[43] 邱翰琦,「微波與毫米波寬頻主動式降頻器」,國立中央大學,碩士論文,民國100年。
[44] 王暐筑,「微波及毫米波寬頻混波器暨低雜訊放大器之研製」,國立中央大學,碩士論文,民國103年。
[45] M. D. Tsai and H. Wang, “A 0.3-25-GHz ultra-wideband mixer using commercial 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 522–524, Nov. 2004.
[46] “Sonnet® User’s Guide,” 13th ed. Sonnet Softw. Inc., North Syracuse, NY, 2009.
[47] M. L. Shieh, W. J. Lai, J. S. Li, Y. L. Chiang, H. H. Wu, C. C. Xsieh, C. H. Tu, S. W. Chen, and J. W. Wu, “Linear radio frequency power detector,” in 2009 Asia Pacific Microw. Conference, Dec 2009, pp. 2316–2319.
[48] A. E. Amer, A. Ashry, M. A. Y. Abdalla, and I. A. Eshrah, “Gilbert Based Power Detector for 5G mm-Wave Transceivers Built-in-Self Test,” IEEE International Symposium on Circuits and Systems, ISCAS 2019, Sapporo, Japan, May 26-29, 2019.
[49] Y.-j. Zhou and Michael Y.-W. Chia, “A Low-Power Ultra-Wideband CMOS True RMS Power Detector,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1052 - 1058, May. 2008.
[50] J. Gorisse, et al., “A 60GHz 65nm CMOS RMS Power Detector for Antenna Impedance Mismatch Detection,” Proc. of ESSCIRC, pp. 172– 175, Sept. 2009.
[51] S. Lakshminarayanan and K. Hofmann, “A Wideband RF Power Detector with −56 dB Sensitivity and 64 dB Dynamic Range in SiGe BiCMOS technology,” 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4.
[52] K.-A. Townsend and J.- W. Haslett, “A Wideband Power Detection System Optimized for the UWB Spectrum,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 371-381, Feb. 2009.
[53] K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A 0.5-7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 531–533, 2007.
[54] D.-H. Seo, J.-Y. Lee and T.-Y. Yun, “ Active and Passive Combined Mixer for Low Flicker Noise and Low dc Offset,” IEEE Microw. Wireless Compon. Lett., vol.25, no. 7, pp. 463-465, 2015.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明