博碩士論文 107524602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.148.105.131
姓名 皮亞克(pitchayakit pahamak)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 透過物聯網和Zenbo機器人實作智慧翻轉教室並探討其對學生互動和感知影響之研究
(A study of implementing smart flipped classroom with internet of things, Zenbo robot and investigating its influence on students′ interaction and perception)
相關論文
★ 同步表演機器人之建構與成效評估★ 探討國小學童使用電子書多媒體註記系統結合註記分享機制對其學習行為與時間之影響
★ 先備知識對註記式多媒體電子書的影響研究:從個別環境到分享環境★ Facilitating EFL speaking and writing with peer-tutoring and storytelling strategies in authentic learning context
★ An investigation into CKEL-supported EFL learning with TPR to reveal the importance of pronunciation and interactive sentence making★ Investigation of Facilitating Physics Learning using Ubiquitous-Physics APP with Learning Map and Discussion Board in Authentic Contexts
★ 智慧互動SmartVpen在真實情境對於英文學習之影響★ 利用合作虛擬化的網絡設計輔助計算機網路學習
★ 探討擴展合作式多媒體認知理論和其對EFL聽力與口語能力之影響 - 結合動覺辨識和學習者設計內容之猜謎遊戲★ 在真實情境中利用智慧機制提升國小學生之外語口說及對話能力之評估
★ 探討在真實情境下教師回饋對學習認知與學習持續性之影響★ 註釋、對話代理和協作概念圖支持大學生議論文寫作和後設認知的培養
★ Developing and Validating the Questionnaire and Its Model for Sustainable and Scalable Authentic Contextual Learning Supported by Mobile Apps★ 探討個人化、情境化及社會化的智慧機制 輔助真實情境國小幾何學習與其對學習成效之影響
★ Investigation of smart mechanisms for authentic contextual learning with sensor and recognition technologies★ 探討智慧回饋如何影響學習時眼動和觸控 操作的表現-以 Covid-19 快篩模擬為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-20以後開放)
摘要(中) 近年來,許多研究機構都認同物聯網和機器人在國家、社會和個人生活,特別是在教育方面的重要性。物聯網和機器人是智慧教室的必要條件,它們能創造最佳的學習環境。因此,本研究旨在將物聯網和機器人 (即Zenbo)應用到翻轉教室中。並在高互動多媒體課程中實現以學習者為中心的學習環境。此外,本研究的翻轉教室配合相互教學,包括總結、提問、澄清、預測 (SQCP)。我們為Zenbo機器人開發了一套智慧學習系統,包括谷歌教室、Zenbo應用程式、教室控制、QR簽到、人臉辨識簽到,應用於臺灣國立中央大學的課程中。
本研究通過Zenbo機器人和物聯網建構智慧學習環境。並分析了本研究提出之方法的有效性,包括學生對翻轉教室的智慧環境的交互性、有用性、使用意圖和易用性。本研究在兩個學期中進行了兩項實驗,包括前導實驗和正式實驗。在前導實驗中,學生在有Zenbo機器人和物聯網輔助的翻轉教室中學習,而在正式實驗中,學生在有Zenbo機器人和物聯網輔助且有更多智慧的功能、工具和應用的智慧環境中學習。
實驗結果表明,與前一種方法相比, 結合了Zenbo與更多的功能、工具和應用後,顯著改善了學生的學習環境和教師的教學方式。結果還表明,Zenbo機器人使用起來並不方便;然而,為Zenbo機器人開發的功能、工具和應用程式在翻轉教室中非常有用,學生們有繼續使用Zenbo機器人進行學習的意願。此外,Zenbo機器人還存在一些局限性,缺乏主動的、視覺化的程式設計語言,在嘈雜的環境下幾乎無法進行對話。在此基礎上,本研究提出了為智慧學習教室開發機器人的功能和應用的建議。相信此研究將幫助研究人員開發用在學習環境中的物聯網和機器人。
摘要(英) In recent years, many institutions have announced the significance of IoT and robot development for countries, societies, and individuals in almost all areas of life, especially in education. Applying IoT technology and assistant robots is necessary for a smart classroom to facilitate the best studying environment. Therefore, this study aims to implement IoT and robot techniques, namely Zenbo, to the innovative pedagogy, called a flipped classroom, to perform a learner-centred learning environment in the High Interaction in Multimedia course. Flipped classroom in this study coordinated with reciprocal teaching summarizing, questioning, clarifying, prediction (SQCP). A smart learning system was developed for the Zenbo robot, including google classroom, Zenbo application, classroom control, QR check-in, face recognition check-in, applying on this course at National Central University, Taiwan.
This study provides essential features for the smart learning environment in the flipped classroom via Zenbo robot and IoT technology. It investigates the effectiveness of the proposed approach, including students′ perception toward interaction, usefulness, intention to use, and easy to use of the smart environment for the flipped classroom. Two experiments, including pilot experiments and regular experiments, were conducted during two semesters. In the first experiment, students learned in the flipped classroom supported by Zenbo robot and IoT, while in the second one, they learned in the smart environment supported by Zenbo robot and IoT with more smart functions, tools, and applications.
The experiment results indicate that in comparison with the former, the proposed approach with Zenbo integrated with more features, tools, and applications, significantly improved the students′ learning environment, and teachers′ teaching way. The results also show that the Zenbo robot is not easy to use; however, the functions, tools, and applications developed for the Zenbo robot are significantly useful in the flipped classroom, and students intend to use the Zenbo robot next time. Besides, the Zenbo robot has some limitations about lacking active, visual programming language, and low communication ability in noisy places. Based on the identified weaknesses, this research presents recommendations for developing another robot with more capability to make more functions and applications for the smart learning classroom. It is believed that this development would give researchers more perfect results to build IoT and robots in the learning environment.
關鍵字(中) ★ 翻轉教室
★ 相互式教學
★ Zenbo機器人
★ 物聯網
★ 智慧教室
★ 智慧學習環境
關鍵字(英) ★ flipped classroom
★ reciprocal teaching
★ Zenbo robot
★ internet of things
★ smart classroom
★ smart learning environment
論文目次 Abstract vi
Acknowledgments x
Contents xi
List of Figures xiv
List of Tables xvi
Chapter 1. Introduction 1
1.1 Background 1
1.2 Research purposes and research questions 3
Chapter 2. Literature Review 4
2.1 Smart learning environment for a flipped classroom 4
2.2 Interaction using Zenbo robot in a flipped classroom 5
2.3 Using visual programming language to interact with a robot 6
2.4 Internet of things for learning environment 7
2.5 Learning management system for flipped classroom 8
Chapter 3. System Design and Implementation 10
3.1 Classroom control Zenbo application 11
3.2 Google classroom application 15
3.3 Face check-in Zenbo application 16
3.4 QR code check-in class 17
3.5 MCS Cloud 18
3.6 Visual programming tool 18
3.7 App Usage Zenbo application 20
3.8 Regular expression 21
Chapter 4. Research Method 22
4.1 Participants 22
4.2 Research architecture 23
4.3 Experimental procedure 25
4.4 Research tools 28
Chapter 5. Results and Discussions 30
5.1 Variable of TAM dimension 31
5.2 Perception towards flipped classroom and interaction with Zenbo robot in the smart learning environment 32
5.3 Programming with Robot to enhance interaction in a smart learning environment 44
5.4 Analyzes usages of Zenbo and IoT in smart classroom 46
5.5 TAM questionnaire 49
5.6 Pearson Correlation Analysis of TAM 53
Chapter 6 Conclusions 55
6.1 Limitation 56
6.2 Future Works 57
References 58
Appendix-A 64
參考文獻 Abeysekera, L., & Dawson, P. (2015). Motivation and cognitive load in the flipped classroom: definition, rationale and a call for research. Higher education research & development, 34(1), 1-14.
AlJarrah, A., Thomas, M. K., & Shehab, M. (2018). Investigating temporal access in a flipped classroom: procrastination persists. International Journal of Educational Technology in Higher Education, 15(1), 1.
Anderson, T., & Dron, J. (2017). Integrating learning management and social networking systems. Italian Journal of Educational Technology, 25(3), 5-19.
Atabekov, A. (2016, April). Internet of things-based smart classroom environment: student research abstract. In Proceedings of the 31st annual ACM symposium on applied computing (pp. 746-747).
Attwell, G. (2007). Personal Learning Environments-the future of eLearning. Elearning papers, 2(1), 1-8.
Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Eugene, OR: International Society for Technology in Education
Bergmann, J., & Sams, A. (2014). Flipped learning: Gateway to student engagement. International Society for Technology in Education.
Chan, E. K. F., Othman, M. A., & Razak, M. A. (2017). Iot based smart classroom system. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-9), 95-101.
Chandramohan, J., Nagarajan, R., Satheeshkumar, K., Ajithkumar, N., Gopinath, P. A., & Ranjithkumar, S. (2017). Intelligent smart home automation and security system using Arduino and Wi-fi. International Journal of Engineering And Computer Science (IJECS), 6(3), 20694-20698.
Chang, H. Y., Wang, C. Y., Lee, M. H., Wu, H. K., Liang, J. C., Lee, S. W. Y., ... & Wu, Y. T. (2015). A review of features of technology-supported learning environments based on participants’ perceptions. Computers in Human Behavior, 53, 223-237.
Chen, Y., Wang, Y., & Chen, N. S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead?. Computers & Education, 79, 16-27.
Cheng, Y. W., Sun, P. C., & Chen, N. S. (2018). The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors. Computers & education, 126, 399-416.
Edwards, A., Edwards, C., Spence, P. R., Harris, C., & Gambino, A. (2016). Robots in the classroom: Differences in students′ perceptions of credibility and learning between "teacher as robot" and "robot as teacher". Computers in Human Behavior, 65, 627-634.
Elfeky, A. I. M. (2019). The effect of personal learning environments on participants’ higher order thinking skills and satisfaction. Innovations in Education and Teaching International, 56(4), 505-516.
Elfeky, A. I. M., Masadeh, T. S. Y., & Elbyaly, M. Y. H. (2020). Advance organizers in flipped classroom via e-learning management system and the promotion of integrated science process skills. Thinking Skills and Creativity, 35, 100622.
Fraser, B. J. (1998). 5.1 science learning environments: Assessment, effects and determinants. International handbook of science education, 527-564.
García Peñalvo, F. J., Conde González, M. Á., Alier Forment, M., & Casany, M. J. (2011). Opening learning management systems to personal learning environments.
Gilboy, M. B., Heinerichs, S., & Pazzaglia, G. (2015). Enhancing student engagement using the flipped classroom. Journal of nutrition education and behavior, 47(1), 109-114.
Hao, J., Bouzouane, A., & Gaboury, S. (2019). An incremental learning method based on formal concept analysis for pattern recognition in nonstationary sensor-based smart environments. Pervasive and Mobile Computing, 59, 101045.
Hughes, J. M. (2016). Arduino: a technical reference: a handbook for technicians, engineers, and makers. " O′Reilly Media, Inc.".
Hwang, G. J., Lai, C. L., & Wang, S. Y. (2015). Seamless flipped learning: a mobile technology-enhanced flipped classroom with effective learning strategies. Journal of computers in education, 2(4), 449-473.
Kim, M. K., Kim, S. M., Khera, O., & Getman, J. (2014). The experience of three flipped classrooms in an urban university: an exploration of design principles. The Internet and Higher Education, 22, 37-50.
Kim, S. H., Park, N. H., & Joo, K. H. (2014). Effects of flipped classroom based on smart learning on self-directed and collaborative learning. International journal of control and automation, 7(12), 69-80.
Lin, C. J., & Hwang, G. J. (2018). A learning analytics approach to investigating factors affecting EFL students′ oral performance in a flipped classroom. Journal of Educational Technology & Society, 21(2), 205-219.
Lin, H. C., & Hwang, G. J. (2019). Research trends of flipped classroom studies for medical courses: A review of journal publications from 2008 to 2017 based on the technology-enhanced learning model. Interactive Learning Environments, 27(8), 1011-1027.
Lin, Y. C., & Huang, Y. M. (2013). A fuzzy-based prior knowledge diagnostic model with multiple attribute evaluation. Journal of Educational Technology & Society, 16(2), 119-136.
Lin, Y. T. (2019). Impacts of a flipped classroom with a smart learning diagnosis system on students′ learning performance, perception, and problem solving ability in a software engineering course. Computers in Human Behavior, 95, 187-196.
Lopes, A. P., & Soares, F. (2018). Perception and performance in a flipped Financial Mathematics classroom. The International Journal of Management Education, 16(1), 105-113.
López-Rodríguez, F. M., & Cuesta, F. (2016). Andruino-a1: Low-cost educational mobile robot based on android and arduino. Journal of Intelligent & Robotic Systems, 81(1), 63-76.
MacLeod, J., Yang, H. H., Zhu, S., & Li, Y. (2018). Understanding students′ preferences toward the smart classroom learning environment: Development and validation of an instrument. Computers & Education, 122, 80-91.
Masadeh, T. S. Y., & Elfeky, A. I. M. (2016). Efficacy of Open-Source Learning Management Systems in Developing the Teaching Skills of English Language Student Teachers. American Journal of Educational Research, 4(4), 329-337.
Mershad, K., & Wakim, P. (2018). A Learning Management System Enhanced with Internet of Things Applications. Journal of Education and Learning, 7(3), 23-40.
Nasution, T. H., Muchtar, M. A., Siregar, I., Andayani, U., Christian, E., & Sinulingga, E. P. (2017, April). Electrical appliances control prototype by using GSM module and Arduino. In 2017 4th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 355-358). IEEE.
O′Flaherty, J., Phillips, C., Karanicolas, S., Snelling, C., & Winning, T. (2015). " The use of flipped classrooms in higher education: A scoping review": Corrigendum.
Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015). Learning basic programming concepts by creating games with scratch programming environment. Procedia-Social and Behavioral Sciences, 191, 1479-1482.
Pacheco, A., Cano, P., Flores, E., Trujillo, E., & Marquez, P. (2018, October). A smart classroom based on deep learning and osmotic IoT computing. In 2018 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI) (pp. 1-5). IEEE.
Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers′ adoption of digital technology in education. Computers & Education, 128, 13-35.
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351-380.
Sharkey, A. J. (2016). Should we welcome robot teachers? Ethics and Information Technology, 18(4), 283-297.
Shen, C. W., Wu, Y. C. J., & Lee, T. C. (2014). Developing a NFC-equipped smart classroom: Effects on attitudes toward computer science. Computers in Human Behavior, 30, 731-738.
Slomanson, W. R. (2014). Blended learning: A flipped classroom experiment. J. LegaL educ., 64, 93.
Temkar, R., Gupte, M., & Kalgaonkar, S. (2016). Internet of things for smart classrooms. International research journal of engineering and technology.
Teo, T. W., Tan, K. C. D., Yan, Y. K., Teo, Y. C., & Yeo, L. W. (2014). How flip teaching supports undergraduate chemistry laboratory learning. Chemistry Education Research and Practice, 15(4), 550-567.
Tsai, C. Y. (2019). Improving students′ understanding of basic programming concepts through visual programming language: The role of self-efficacy. Computers in Human Behavior, 95, 224-232.
Uzelac, A., Gligoric, N., & Krco, S. (2015). A comprehensive study of parameters in physical environment that impact students′ focus during lecture using Internet of Things. Computers in Human Behavior, 53, 427-434.
Wu, M. Y., Chou, H. P., Weng, Y. C., & Huang, Y. H. (2011). TAM-2 based study of website user behavior-using web 2.0 websites as an example. WSEAS Transactions on Business and Economics, 4(8), 133-151.
Xie, W., Shi, Y., Xu, G., & Xie, D. (2001, October). Smart classroom-an intelligent environment for tele-education. In Pacific-Rim Conference on Multimedia (pp. 662-668). Springer, Berlin, Heidelberg.
Yang, J., Pan, H., Zhou, W., & Huang, R. (2018). Evaluation of smart classroom from the perspective of infusing technology into pedagogy. Smart Learning Environments, 5(1), 1-11.
指導教授 黃武元(Wu-Yuin Hwang) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明