參考文獻 |
中文參考文獻
何岱傑, 張維恕, 林慶偉, & 劉守恆. (2014). 應用數值地形及光學影像於潛在大規模崩塌地形特徵判釋. 航測及遙測學刊, 18 (2) , 109-127.
劉守恆. (2002). 衛星影像於崩塌地自動分類組合之研究. 成功大學地球科學系學位論文, 1-83.
孔繁恩, 詹進發, 邵怡誠, 李茂園, 葉堃生, & 陳連晃. (2014). 物件式分類法於高解析度航照影像萃取崩塌地之研究. 航測及遙測學刊, 18 (4) , 267-281.
李強, & 張景發. (2017). 高光譜遙感技術在建 (構) 築物震害識別中的應用. 震災防禦技術, 12 (1) , 96-106.
李錫堤, 董家鈞, & 林銘郎. (2009). 小林村災變之地質背景探討. 地工技術, 122, 87-94.
林於筌. (2012). 集水區崩塌地植生復育影響因數及治理區位優選之研究. 中興大學水土保持學系所學位論文, 1-67.
林俊廷, & 廖志中. (2013). 堰塞湖形成潛感及潛勢圖—以旗山溪流域為例. http://hdl.handle.net/11536/76130.
林松駿, & 梁偉立. (2018). 衛星影像判釋與現地探查天然林集水區新生崩塌地分佈之比較: 以 2015 年蘇迪勒颱風誘發崩塌為例. 中華水土保持學報, 49 (1) , 1-11.
林穎東, 張國楨, & 楊啟見. (2018). 利用物件式導向進行崩塌地種類判釋, 復育追蹤—以高雄市寶來地區為例. Journal of Chinese Soil and Water Conservation, 49 (2), 98-109.
林美聆, & 陳彥澄. (2014). 應用光達地形資料於莫拉克災後陳有蘭溪流域崩塌與土石流地質敏感地區判釋與分析. 航測及遙測學刊, 18 (2) , 129-143.
楊智堯. (1999). 類神經網路於邊坡破壞潛能分析之應用研究, 國立成功大學土木工程學系學位論文, 1-123.
洪凱政. (2009). 應用多光譜影像多種特徵偵測崩塌地之研究, 國立成功大學測量及空間資訊學系學位論文, 1-154.
王潤生. (2012). 高光譜遙感的物質組分和物質成分反演的應用分析. 地球資訊科學學報, 11 (3) , 261-267.
田豐, 楊蘇明, & 王潤生. (2010). EO-1 Hyperion 高光譜資料 FLAASH 模組大氣糾正. 新疆地質, 28 (1) , 109-112.
莊智瑋, 林昭遠, & 錢滄海. (2010). 以馬可夫鏈模式推估九份二山崩塌地植生復育之研究. Journal of Soil and Water Conservation, 42 (3), 329-344.
詹勳全, 張嘉琪, 陳樹群, 魏鬱軒, 王昭堡, & 李桃生. (2015). 台灣山區淺層崩塌地特性調查與分析. Journal of Chinese Soil and Water Conservation, 46 (1), 19-28.
譚炳香, 李增元, 陳爾學, & 龐勇. (2005). EO-1 Hyperion 高光譜數據的預處理. 遙感信息, 2005 (6) , 36-41.
陳樹群, & 吳俊鋐. (2004). 崩塌潛勢預測方法於台灣適用性之初探.
陳正德. (2015). 運用環境指標評估荖濃溪集水區崩塌風險度之研究. 中興大學水土保持學系所學位論文, 1-54.
馮豐隆, & 林鴻鵬. (2003). 惠蓀林場 921 地震崩塌地分佈分析與復育探討.
高玉惠. (2004). 小波轉換應用於影像自動判釋崩塌地分析, 國立成功大學地球科學系學位論文, 1- 81.
魏倫瑋, 羅佳明, 鄭添耀, 鄭錦桐, & 冀樹勇. (2012). 深層崩塌之地貌特徵─ 以台灣南部地區為例. 中興工程 (115) , 35-43.
黃韋凱, 林銘郎, 陳良健, 林彥享, & 蕭震洋. (2010). 物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類. Journal of Photogrammetry and Remote Sensing, 15 (1), 29-49.
英文參考文獻
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150.
Wu, J., Liu, Y., Wang, J., & He, T. (2010). Application of Hyperion data to land degradation mapping in the Hengshan region of China. International Journal of Remote Sensing, 31(19), 5145-5161.
Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Salvati, P. (2002) . A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy.
Chang, K. T., Liu, J. K., & Wang, C. I. (2012) . An object.oriented analysis for characterizing the rainfall.induced shallow landslide. Journal of Marine Science and Technology, 20 (6) , 647-656.
Chou, W. C., Lin, W. T., & Lin, C. Y. (2009) . Vegetation recovery patterns assessment at landslides caused by catastrophic earthquake: A case study in central Taiwan. Environmental monitoring and assessment, 152 (1-4) , 245.
Cruden, D. M., & Varnes, D. J. (1996) . Landslides: investigation and mitigation. Chapter 3.Landslide types and processes. Transportation research board special report (247) .
Dou, J., Paudel, U., Oguchi, T., Uchiyama, S., & Hayakavva, Y. S. (2015) . Shallow and Deep.Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terrestrial, Atmospheric & Oceanic Sciences, 26 (2) .
Escape, C. M., Kristia Alemania, M., Luzon, P. K., Felix, R., Salvosa, S., Aquino, D., Mahar Francisco Lagmay, A. (2014) . Comparison of various remote sensing classification methods for landslide detection using ArcGIS. Paper presented at the EGU General Assembly Conference Abstracts.
Farooq, S., & Govil, H. (2014) . Mapping Regolith and Gossan for Mineral Exploration in the Eastern Kumaon Himalaya, India using hyperion data and object oriented image classification. Advances in Space Research, 53 (12) , 1676-1685.
Filchev, L. (2014) . Satellite hyperspectral Earth observation missions.a review. Bulgarian Academy of Sciences. Space Research and Technology Institute, Aerospace Research in Bulgaria, 26, 191-206.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K..T. (2012) . Landslide inventory maps: New tools for an old problem. Earth.Science Reviews, 112 (1.2) , 42-66.
Jia, M., Zhang, Y., Wang, Z., Song, K., & Ren, C. (2014) . Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high.resolution data. International Journal of Applied Earth Observation and Geoinformation, 33, 226-231.
Kumar, M. V., & Yarrakula, K. (2017) . Comparison of efficient techniques of hyper.spectral image preprocessing for mineralogy and vegetation studies.
Mezaal, M. R., Pradhan, B., Shafri, H., Mojaddadi, H., & Yusoff, Z. (2017) . Optimized hierarchical rule.based classification for differentiating shallow and deep.seated landslide using high.resolution LiDAR data. Paper presented at the Global Civil Engineering Conference.
Mitri, G. H., & Gitas, I. Z. (2013) . Mapping post.fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 20, 60-66.
Pi, Y., Nath, N. D., & Behzadan, A. H. (2020) . Convolutional neural networks for object detection in aerial imagery for disaster response and recovery. Advanced Engineering Informatics, 43, 101009.
Soeters, R., & Van Westen, C. (1996) . Slope instability recognition, analysis and zonation. Landslides: investigation and mitigation, 247, 129-177.
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., & Van Beek, L. (2005) . The effectiveness of hillshade maps and expert knowledge in mapping old deep.seated landslides. Geomorphology, 67 (3-4) , 351-363.
Varnes, D. J. (1978) . Slope movement types and processes. Special report, 176, 11-33.
Yang, W., Qi, W., & Zhou, J. (2018) . Decreased post.seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake. Ecological indicators, 89, 438-444.
Zhu, W., Tian, Y. Q., Yu, Q., & Becker, B. L. (2013) . Using Hyperion imagery to monitor the spatial and temporal distribution of colored dissolved organic matter in estuarine and coastal regions. Remote Sensing of Environment, 134, 342-354. |