博碩士論文 106326603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.147.61.218
姓名 阮文勝(Nguyen Van Thang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱
(Co-gasification of sewage sludge and textile sludge using a lab-scale fluidized-bed gasifier)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-24以後開放)
摘要(中) 本研究目的在於探討使用流體化床氣化爐,在控制溫度850℃及等值比為0.2的條件下,對下水汚泥(sewage sludge, SS)與紡織污泥(textile sludge, TS)共同氣化產能的可行性。研究同時利用氣化爐結合整合型熱氣清淨系統,評估去除共同氣化過程所衍生污染物之效果,其中熱氣清淨系統主要以沸石、煅燒白雲石與活性碳所組成。為進一步瞭解下水汚泥與紡織污泥之共同氣化反應行為,本研究利用多步驟熱動力學分析方法,討論有關污泥共同氣化的熱分解反應動力學參數。
根據多步驟熱動力學分析結果顯示,下水汚泥、紡織污泥及其混合物的熱分解過程,呈現三種假反應(pseudo reaction),其中紡織污泥反應活化能在三個連續反應階段,分別介於90-160、100-190與230-320 kJ/mol之範圍。雖然紡織污泥較不容易分解,但當與下水污泥混合後,將有助於污泥之共同分解。
下水汚泥與紡織污泥共同氣化反應分析結果顯示,當添加紡織污泥從15%增加至45%時,H2產量從2.45 mol/kg下降至2.12 mol/kg,然CO產量可從2.83 mol/kg上升至3.98 mol/kg。在共同氣化反應過程,產生氣體之冷燃氣效率介於13.61%至14.88%間,產氣能量則在2.40至2.63 MJ/kg之範圍內。若相較於下水污泥的氣化反應結果,單一下水汚泥的氣化產氣能量約為3.22 MJ/kg,稍高於與紡織污泥共同氣化之產氣能量。然而,就焦油形成的影響而言,當試驗過程添加紡織污泥,氣化反應所生成之總焦油量將降低,其中尤以輕質焦油的減量最為明顯。因此,試驗過程添加紡織污泥從15 wt.%增加至45 wt.% 時,可顯著提升污泥共同氣化的效能。熱氣清淨系統對於去除焦油之研究結果顯示,此系統可去除總焦油含量之77%,同時可去移約90%之重質焦油及35%氨氣。整體而言,本研究成果可初步驗證紡織污泥與下水汚泥共同氣化處理,不僅可處理大量產生之紡織污泥,同時可轉化污泥為能量應用。本研究擬發展的整合型熱氣清淨系統 (包括沸石、煅燒白雲石及活性碳),對氣化產氣中焦油及NH3具有良好的去除效果。
摘要(英) This study investigated that feasibility of energy yield in co-gasification of sewage sludge (SS) and textile sludge (TS) using a fluidized-bed gasifier under controlled temperature of 850 ℃ and equivalence ratio of 0.2. An integrated hot-gas cleaning system equipped with zeolite, calcined dolomite, and activated carbon was installed and connected with gasifier for removing of trace pollutants produced from co-gasification process. Meanwhile, to further understanding the co-gasification behavior, the thermal degradation kinetic of SS and TS was also discussed using multistep-based determination method.
The kinetic analysis results indicated that the three pseudo reactions occurred in the decomposition of sewage sludge, textile sludge, and their blends using the multistep-based method. Compared to sewage sludge, the activation energy of textile sludge for three consecutive stages varied more widely in the 90-160, 100-190, and 230-320 kJ/mol range, respectively. Although, textile sludge was found harder to decompose, but its presence in a sludge mixture might positively influence sludge co-degradation.
Concerning co-gasification of SS and TS, in the case of TS addition increasing from 15 to 45 wt.%, H2 yield decreased from 2.45 to 2.12 mol/kg as well as CO yield increasing from 2.83 to 3.98 mol/kg. The cold gas efficiency (CGE) of the produced gas in co-gasification was varied in the range of 13.61-14.88 %, whereas the energy yield was found in the range of 2.40-2.63 MJ/kg of dry sludge. However, the energy yield produced from SS gasification was approximately 3.22 MJ/kg. It could observe the higher energy yield generated from SS gasification than that of co-gasification of SS and TS. Regarding tar formation, the TS presence in the feedstock could reduce the relative amount of total tar, especially for the light fraction tar reduction. Therefore, the TS addition increased from 15 to 45 wt.%, it could significantly enhance the gasification performance. A hot-gas cleaning system used in this research presented a considerable performance on tar removal efficiency that reached about 77 % of total tar content as well as removing 90 % heavy fraction tar and 35% ammonia gas in the produced gas.
In summary, co-gasification of sewage and textile sludge was considered as an alternative for simultaneous treating the increasing amount of these sludge and converting sludge-to-energy. Meanwhile, using a hot-gas cleaning system consisting of zeolite, calcined dolomite, and activated carbon would become a good choice for abating the tar and NH3 impurities in producer gas.
關鍵字(中) ★ 共同氣化
★ 下水污泥
★ 紡織污泥
★ 污泥轉化為能源
★ 焦油
★ 氨氣
關鍵字(英) ★ co-gasification
★ sewage sludge
★ textile sludge
★ sludge-to-energy
★ tar
★ NH3
論文目次 摘要 i
Abstract iii
Acknowledgements v
Table of Contents vii
List of Tables x
List of Figures xii
Explanation of Symbols xiv
Chapter 1 Introduction 1
Chapter 2 Literature review 5
2-1 Kinetic investigation of thermal conversion 5
2-2 Gasification application 7
2-2-1 Fundamental principles 7
2-2-2 Gasification as a waste treatment method 9
2-2-3 Co-gasification 17
2-3 Gasification of treatment sludge 18
2-3-1 Characteristics of sewage sludge and textile dyeing sludge 18
2-3-2 State-of-the-art 22
2-3-3 Challenges 28
Chapter 3 Materials and Methods 30
3-1 Material 30
3-1-1 Preparation 30
3-1-2 Characterization 30
3-2 Kinetic analysis 35
3-2-1 Kinetic triplet 35
3-2-2 Deconvolution procedure 39
3-3 Gasification experiment 39
3-3-1 Experimental apparatus 39
3-3-2 Operating condition determination 41
3-3-3 Analytical methods 43
3-3-4 Evaluation index 45
Chapter 4 Results and Discussion 47
4-1 Characteristics of treatment sludge 47
4-2 Sewage and textile sludge thermal degradation 50
4-2-1 Thermogravimetric analysis 50
4-2-2 Functional group determination using TG-FTIR 53
4-3 Kinetic analysis of sludge devolatilization 58
4-3-1 Comparison of kinetic parameters from single-step versus multistep methods 58
4-3-2 Using multistep method for sewage and textile sludge mixture 70
4-4 Gasification of sewage sludge versus textile sludge 76
4-4-1 Mass balance 76
4-4-2 Gaseous products 77
4-4-3 Liquid products 84
4-4-4 Solid products 88
4-4-5 Performance evaluation 92
4-5 Influence of blending ratio on co-gasification performance 94
4-5-1 Gas production 94
4-5-2 Tar generation 99
4-6 Impurity reduction by using a hot-gas cleaning unit 102
4-6-1 Tar reduction 102
4-6-2 Ammonia reduction 108
4-6-3 Sorbent characteristics after cleaning 111
4-6-4 Particulate matter issue 114
Chapter 5 Conclusion and Recommendation 116
5-1 Conclusion 116
5-2 Recommendation 120
References 121
參考文獻 Ahmed, I.I., Gupta, A.K., 2011. Particle size, porosity and temperature effects on char conversion. Appl. Energy 88, 4667-4677.
Aho, M.J., Hämäläinen, J.P., Tummavuori, J.L., 1993. Conversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800 °C. Fuel 72, 837-841.
Alvarez, J., Lopez, G., Amutio, M., Artetxe, M., Barbarias, I., Arregi, A., Bilbao, J., Olazar, M., 2016. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Process. Technol. 149, 169-175.
Anwar, T.B., Behrose, B., Ahmed, S., 2018. Utilization of textile sludge and public health risk assessment in Bangladesh. Sustain. Environ. Res. 28, 228-233.
Arena, U., Di Gregorio, F., 2014. Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor. Energy 68, 735-743.
Ashraf, A., Sattar, H., Munir, S., 2019. A comparative applicability study of model-fitting and model-free kinetic analysis approaches to non-isothermal pyrolysis of coal and agricultural residues. Fuel 240, 326-333.
Asilian, H., Mortazavi, S.B., Phaghiehzadeh, S., Salem, M., Kazemian, H., Shahtaheri, S., 2004. Removal of ammonia from air, using three iranian natural zeolites. Iran J Public Health 33, 45-51.
ASTM International, 2013. D5865-13 Standard Test Method for Gross Calorific Value of Coal and Coke, West Conshohocken, PA.
ASTM International, 2015. E1755-01(2015) Standard Test Method for Ash in Biomass, West Conshohocken, PA.
ASTM International, 2016. ASTM D5373-16 Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke, West Conshohocken, PA.
ASTM International, 2018. D7359-18 Standard Test Method for Total Fluorine, Chlorine and Sulfur in Aromatic Hydrocarbons and Their Mixtures by Oxidative Pyrohydrolytic Combustion followed by Ion Chromatography Detection (Combustion Ion Chromatography-CIC), West Conshohocken, PA.
ASTM International, 2019a. E871-82(2019) Standard Test Method for Moisture Analysis of Particulate Wood Fuels, West Conshohocken, PA.
ASTM International, 2019b. E872-82(2019) Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels, West Conshohocken, PA.
Ayol, A., Tezer Yurdakos, O., Gurgen, A., 2019. Investigation of municipal sludge gasification potential: Gasification characteristics of dried sludge in a pilot-scale downdraft fixed bed gasifier. International Journal of Hydrogen Energy.
Baird, R., Bridgewater, L., American Public Health, A., American Water Works, A., Water Environment, F., 2017. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C.
Baldock, J.A., Smernik, R.J., 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 33, 1093-1109.
Barneto, A.G., Carmona, J.A., Alfonso, J.E.M., Blanco, J.D., 2009. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J. Anal. Appl. Pyrolysis 86, 108-114.
Basu, P., 2006. Combustion and gasification in fluidized beds. Taylor & Francis, Boca Raton, FL.
Basu, P., 2018a. Chapter 3 - Biomass Characteristics, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition). Academic Press, pp. 49-91.
Basu, P., 2018b. Chapter 7 - Gasification Theory, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition). Academic Press, pp. 211-262.
Basu, P., 2018c. Chapter 8 - Design of Biomass Gasifiers, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition). Academic Press, pp. 263-329.
Basu, P., 2018d. Chapter 14 - Analytical Techniques, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition). Academic Press, pp. 479-495.
Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., Belayouni, H., 2014. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char. Waste Manage. 34, 210-218.
Bhoi, P.R., Huhnke, R.L., Kumar, A., Indrawan, N., Thapa, S., 2018. Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy 163, 513-518.
Blázquez, G., Pérez, A., Iáñez-Rodríguez, I., Martínez-García, C., Calero, M., 2019. Study of the kinetic parameters of thermal and oxidative degradation of various residual materials. Biomass Bioenergy 124, 13-24.
Bronson, B., Gogolek, P., Mehrani, P., Preto, F., 2016. Experimental investigation of the effect of physical pre-treatment on air-blown fluidized bed biomass gasification. Biomass Bioenergy 88, 77-88.
Cai, H., Liu, J., Kuo, J., Buyukada, M., Evrendilek, F., 2019. Thermal characteristics, kinetics, gas emissions and thermodynamic simulations of (co-)combustions of textile dyeing sludge and waste tea. J. Clean. Prod. 239.
Cao, Y., Fu, L., Mofrad, A., 2019. Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. Journal of the Energy Institute.
Chan, W.P., Veksha, A., Lei, J., Oh, W.-D., Dou, X., Giannis, A., Lisak, G., Lim, T.-T., 2019. A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Applied Energy 237, 227-240.
Chanaka Udayanga, W.D., Veksha, A., Giannis, A., Lisak, G., Chang, V.W.C., Lim, T.-T., 2018. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 226, 721-744.
Chen, S., Sun, Z., Zhang, Q., Hu, J., Xiang, W., 2017. Steam gasification of sewage sludge with CaO as CO2 sorbent for hydrogen-rich syngas production. Biomass Bioenergy 107, 52-62.
Chen, Y.-C., Kuo, J., 2016. Potential of greenhouse gas emissions from sewage sludge management: a case study of Taiwan. J. Clean. Prod. 129, 196-201.
Cheng, S.-Y., Ngoc Lan Thao, N.T., Chiang, K.-Y., 2020. Hydrogen gas yield and trace pollutant emission evaluation in automotive shredder residue (ASR) gasification using prepared oyster shell catalyst. Int. J. Hydrog. Energy.
Cheng, X., Zhang, M., Wang, Z., Xu, G., Ma, C., 2018. IR and kinetic study of sewage sludge combustion at different oxygen concentrations. Waste Manage. 74, 279-287.
Chiang, K.-Y., Lin, Y.-X., Lu, C.-H., Chien, K.-L., Lin, M.-H., Wu, C.-C., Ton, S.-S., Chen, J.-L., 2013a. Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst. Int. J. Hydrog. Energy 38, 12318-12324.
Chiang, K.-Y., Lu, C.-H., Chien, K.-L., 2013b. The aluminum silicate catalyst effect on efficiency of energy yield in gasification of paper-reject sludge. Int. J. Hydrog. Energy 38, 15787-15793.
Chiou, I.-J., Chen, C.-H., Lin, Y.-S., 2014. Combustion behavior and optimal proportion of industrial sludge-derived fuels. Environmental Progress & Sustainable Energy 33, 1000-1007.
Chiou, I.-J., Wu, I.T., 2014. Evaluating the manufacturability and combustion behaviors of sludge-derived fuel briquettes. Waste Manage. 34, 1847-1852.
Cho, M.-H., Choi, Y.-K., Kim, J.-S., 2015. Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy 87, 586-593.
Cho, M.-H., Mun, T.-Y., Kim, J.-S., 2013. Production of low-tar producer gas from air gasification of mixed plastic waste in a two-stage gasifier using olivine combined with activated carbon. Energy 58, 688-694.
Choi, Y.-K., Cho, M.-H., Kim, J.-S., 2016a. Air gasification of dried sewage sludge in a two-stage gasifier. Part 4: Application of additives including Ni-impregnated activated carbon for the production of a tar-free and H2-rich producer gas with a low NH3 content. Int. J. Hydrog. Energy 41, 1460-1467.
Choi, Y.-K., Ko, J.-H., Kim, J.-S., 2017. A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5 h gasification. Energy 118, 139-146.
Choi, Y.-K., Ko, J.-H., Kim, J.-S., 2018. Gasification of dried sewage sludge using an innovative three-stage gasifier: Clean and H2-rich gas production using condensers as the only secondary tar removal apparatus. Fuel 216, 810-817.
Choi, Y.-K., Mun, T.-Y., Cho, M.-H., Kim, J.-S., 2016b. Gasification of dried sewage sludge in a newly developed three-stage gasifier: Effect of each reactor temperature on the producer gas composition and impurity removal. Energy 114, 121-128.
Coates, J., 2006. Interpretation of infrared spectra, a practical approach, in: McKelvy, R.A.M.a.M.L. (Ed.), Encyclopedia of Analytical Chemistry.
Conesa, J.A., Marcilla, A., Moral, R., Moreno-Caselles, J., Perez-Espinosa, A., 1998. Evolution of gases in the primary pyrolysis of different sewage sludges. Thermochim. Acta 313, 63-73.
Conesa, J.A., Marcilla, A., Prats, D., Rodriguez-Pastor, M., 1997. Kinetic study of the pyrolysis of sewage sludge. Waste Manage. Res. 15, 293-305.
de Andrés, J.M., Narros, A., Rodríguez, M.E., 2011a. Air-steam gasification of sewage sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst. Fuel Process. Technol. 92, 433-440.
de Andrés, J.M., Narros, A., Rodríguez, M.E., 2011b. Behaviour of dolomite, olivine and alumina as primary catalysts in air–steam gasification of sewage sludge. Fuel 90, 521-527.
de Andrés, J.M., Roche, E., Narros, A., Rodríguez, M.E., 2016. Characterisation of tar from sewage sludge gasification. Influence of gasifying conditions: Temperature, throughput, steam and use of primary catalysts. Fuel 180, 116-126.
de Caprariis, B., Bassano, C., Bracciale, M.P., Deiana, P., Hernandez, A.D., Santarelli, M.L., Scarsella, M., De Filippis, P., 2020. Biomass Gasification: The Effect of the Surface Area of Different Materials on Tar Abatement Efficiency. Energy Fuels 34, 1137-1144.
Demiral, İ., Eryazıcı, A., Şensöz, S., 2012. Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass Bioenergy 36, 43-49.
Derouane, E.G., Védrine, J.C., Pinto, R.R., Borges, P.M., Costa, L., Lemos, M.A.N.D.A., Lemos, F., Ribeiro, F.R., 2013. The Acidity of Zeolites: Concepts, Measurements and Relation to Catalysis: A Review on Experimental and Theoretical Methods for the Study of Zeolite Acidity. Catal Rev 55, 454-515.
Dhyani, V., Bhaskar, T., 2018. Chapter 2 - Kinetic analysis of biomass pyrolysis, in: Bhaskar, T., Pandey, A., Mohan, S.V., Lee, D.-J., Khanal, S.K. (Eds.), Waste Biorefinery. Elsevier, pp. 39-83.
Do, K.-U., Harada, H., Saizen, I., 2018. Enhancement of Biogas Production from Anaerobic Digestion of Disintegrated Sludge: A Techno-Economic Assessment for Sludge Management of Wastewater Treatment Plants in Vietnam, in: Chan, H.-Y., Sopian, K. (Eds.), Renewable Energy in Developing Countries: Local Development and Techno-Economic Aspects. Springer International Publishing, Cham, pp. 129-154.
Dong, J., Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., 2018. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Sci. Total Environ. 626, 744-753.
Durak-Çetin, Y., Sarıoğlan, Ş., Sarıoğlan, A., Okutan, H., 2016. The effect of support type on the activity of zeolite supported iron catalysts for the decomposition of ammonia. React. Kinet. Mech. Catal. 118, 683-699.
Eurostat, 2020. Sewage sludge production and disposal from urban wastewater, 31/01/2020 ed.
Font, R., Fullana, A., Conesa, J., 2005. Kinetic models for the pyrolysis and combustion of two types of sewage sludge. J. Anal. Appl. Pyrolysis 74, 429-438.
Freda, C., Cornacchia, G., Romanelli, A., Valerio, V., Grieco, M., 2018. Sewage sludge gasification in a bench scale rotary kiln. Fuel 212, 88-94.
Gao, N., Li, A., Quan, C., Du, L., Duan, Y., 2013. TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J. Anal. Appl. Pyrolysis 100, 26-32.
Gao, N., Li, J., Qi, B., Li, A., Duan, Y., Wang, Z., 2014. Thermal analysis and products distribution of dried sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 105, 43-48.
Gao, Z., Zhang, H., Ao, W., Li, J., Liu, G., Chen, X., Fu, J., Ran, C., Liu, Y., Kang, Q., Mao, X., Dai, J., 2017. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: Condensates and non-condensable gases. Environ. Pollut. 228, 331-343.
Ghaly, A., Ananthashankar, R., Alhattab, M., Ramakrishnan, V., 2014. Production, Characterization and Treatment of Textile Effluents: A Critical Review. J Chem Eng Process Technol 5.
Hai, I.U., Sher, F., Zarren, G., Liu, H., 2019. Experimental investigation of tar arresting techniques and their evaluation for product syngas cleaning from bubbling fluidized bed gasifier. J. Clean. Prod. 240, 118239.
Herman, A.P., Yusup, S., Shahbaz, M., Patrick, D.O., 2016. Bottom Ash Characterization and its Catalytic Potential in Biomass Gasification, Procedia Eng., pp. 432-436.
Hernández, A.B., Okonta, F., Freeman, N., 2017. Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetic analysis. J. Environ. Manage. 196, 560-568.
Hervy, M., Olcese, R., Bettahar, M.M., Mallet, M., Renard, A., Maldonado, L., Remy, D., Mauviel, G., Dufour, A., 2019. Evolution of dolomite composition and reactivity during biomass gasification. Appl. Catal., A 572, 97-106.
Higman, C., van der Burgt, M., 2008. Chapter 4 - Feedstocks and Feedstock Characteristics, in: Higman, C., van der Burgt, M. (Eds.), Gasification (Second Edition). Gulf Professional Publishing, Burlington, pp. 47-90.
Hill, C.G., Root, T.W., 2014. Introduction to chemical engineering kinetics & reactor design.
Hu, J., Shao, J., Yang, H., Lin, G., Chen, Y., Wang, X., Zhang, W., Chen, H., 2017. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char. Bioresour. Technol. 244, 1-7.
Hu, M., Chen, Z., Wang, S., Guo, D., Ma, C., Zhou, Y., Chen, J., Laghari, M., Fazal, S., Xiao, B., Zhang, B., Ma, S., 2016a. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers. Manag. 118, 1-11.
Hu, M., Gao, L., Chen, Z., Ma, C., Zhou, Y., Chen, J., Ma, S., Laghari, M., Xiao, B., Zhang, B., Guo, D., 2016b. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Convers. Manag. 111, 409-416.
Hu, Q., Dai, Y., Wang, C.-H., 2020. Steam co-gasification of horticultural waste and sewage sludge: Product distribution, synergistic analysis and optimization. Bioresour. Technol. 301, 122780.
Hu, Z., Ma, X., Chen, Y., Liao, Y., Wu, J., Yu, Z., Li, S., Yin, L., Xu, Q., 2015. Co-combustion of coal with printing and dyeing sludge: Numerical simulation of the process and related NOX emissions.
Huang, H.-j., Yang, T., Lai, F.-y., Wu, G.-q., 2017a. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 125, 61-68.
Huang, J., Liu, J., Chen, J., Xie, W., Kuo, J., Lu, X., Chang, K., Wen, S., Sun, G., Cai, H., Buyukada, M., Evrendilek, F., 2018. Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion, kinetic, thermodynamic and emission analyses. Bioresour. Technol. 266, 389-397.
Huang, Z., Xu, G., Deng, Z., Zhao, K., He, F., Chen, D., Wei, G., Zheng, A., Zhao, Z., Li, H., 2017b. Investigation on gasification performance of sewage sludge using chemical looping gasification with iron ore oxygen carrier. Int. J. Hydrog. Energy 42, 25474-25491.
Indrawan, N., Thapa, S., Bhoi, P.R., Huhnke, R.L., Kumar, A., 2018. Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance. Energy 162, 764-775.
Irfan, M., Li, A., Zhang, L., Wang, M., Chen, C., Khushk, S., 2019. Production of hydrogen enriched syngas from municipal solid waste gasification with waste marble powder as a catalyst. International Journal of Hydrogen Energy 44, 8051-8061.
Islam, M.W., 2020. A review of dolomite catalyst for biomass gasification tar removal. Fuel 267, 117095.
Jeong, Y.-S., Choi, Y.-K., Park, K.-B., Kim, J.-S., 2019. Air co-gasification of coal and dried sewage sludge in a two-stage gasifier: Effect of blending ratio on the producer gas composition and tar removal. Energy 185, 708-716.
Judex, J.W., Gaiffi, M., Burgbacher, H.C., 2012. Gasification of dried sewage sludge: Status of the demonstration and the pilot plant. Waste Manage. 32, 719-723.
Koga, N., Goshi, Y., Yamada, S., Pérez-Maqueda, L.A., 2013. Kinetic approach to partially overlapped thermal decomposition processes. J. Therm. Anal. Calorim. 111, 1463-1474.
Kotaiah Naik, D., Monika, K., Prabhakar, S., Parthasarathy, R., Satyavathi, B., 2017. Pyrolysis of sorghum bagasse biomass into bio-char and bio-oil products. J. Therm. Anal. Calorim. 127, 1277-1289.
Kunii, D., Levenspiel, O., Brenner, H., 2014. Fluidization Engineering. Elsevier Science, Saint Louis.
Kwapinska, M., Xue, G., Horvat, A., Rabou, L.P.L.M., Dooley, S., Kwapinski, W., Leahy, J.J., 2015. Fluidized Bed Gasification of Torrefied and Raw Grassy Biomass (Miscanthus × gigantenus). The Effect of Operating Conditions on Process Performance. Energy Fuels 29, 7290-7300.
Lahijani, P., Zainal, Z.A., Mohammadi, M., Mohamed, A.R., 2015. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sust. Energ. Rev. 41, 615-632.
Lan, W., Chen, G., Zhu, X., Wang, X., Wang, X., Xu, B., 2018. Research on the characteristics of biomass gasification in a fluidized bed. J. Energy Inst.
Lazzari, E., Schena, T., Marcelo, M.C.A., Primaz, C.T., Silva, A.N., Ferrão, M.F., Bjerk, T., Caramão, E.B., 2018. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. nd Crops Prod 111, 856-864.
Le, H.-T., 2017. Report on Vietnam Textile and Apparel (in Vietnamese). FPT Securities.
Lee, U., Dong, J., Chung, J.N., 2018. Experimental investigation of sewage sludge solid waste conversion to syngas using high temperature steam gasification. Energy Convers. Manag. 158, 430-436.
Li, C., Suzuki, K., 2009. Tar property, analysis, reforming mechanism and model for biomass gasification—An overview. Renew. Sust. Energ. Rev. 13, 594-604.
Li, C., Wang, X., Zhang, G., Li, J., Li, Z., Yu, G., Wang, Y., 2018. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification. Bioresour. Technol. 254, 187-193.
Li, X., Lin, S., Hao, T., Khanal, S.K., Chen, G., 2019. Elucidating pyrolysis behaviour of activated sludge in granular and flocculent form: Reaction kinetics and mechanism. Water Res. 162, 409-419.
Liang, X., Ning, X.-a., Chen, G., Lin, M., Liu, J., Wang, Y., 2013. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants. Ecotoxicol. Environ. Saf. 98, 128-134.
Lin, M., Ning, X.-a., Liang, X., Wei, P., Wang, Y., Liu, J., 2014. Study of the heavy metals residual in the incineration slag of textile dyeing sludge. Journal of the Taiwan Institute of Chemical Engineers 45, 1814-1820.
Lin, Y., Chen, Z., Dai, M., Fang, S., Liao, Y., Yu, Z., Ma, X., 2018. Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM). Bioresour. Technol. 259, 173-180.
Lin, Y., Liao, Y., Yu, Z., Fang, S., Ma, X., 2017. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Convers. Manag. 151, 190-198.
Lin, Y., Tian, Y., Xia, Y., Fang, S., Liao, Y., Yu, Z., Ma, X., 2019. General distributed activation energy model (G-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge. Bioresour. Technol. 273, 545-555.
Liu, J., Xie, W., Zhuo, Z., Buyukada, M., Evrendilek, F., 2017. Thermochemical behaviorsof textile dying sludge, paper mill sludge, and their blends during (co-)combustion. Thermochim. Acta 655, 101-105.
Liu, Y., Ran, C., Siddiqui, A.R., Mao, X., Kang, Q., Fu, J., Deng, Z., Song, Y., Jiang, Z., Zhang, T., Dai, J., 2018. Pyrolysis of textile dyeing sludge in fluidized bed and microwave-assisted auger reactor: Comparison and characterization of pyrolysis products. J. Hazard. Mater. 359, 454-464.
Liu, Y., Ran, C., Siyal, A.A., Song, Y., Jiang, Z., Dai, J., Chtaeva, P., Fu, J., Ao, W., Deng, Z., Zhang, T., 2020. Comparative study for fluidized bed pyrolysis of textile dyeing sludge and municipal sewage sludge. J. Hazard. Mater. 396.
Lu, C.-H., Chiang, K.-Y., 2017. Gasification of non-recycled plastic packaging material containing aluminum: Hydrogen energy production and aluminum recovery. International Journal of Hydrogen Energy 42, 27532-27542.
Lu, J.-S., Chang, Y., Poon, C.-S., Lee, D.-J., 2020. Slow pyrolysis of municipal solid waste (MSW): A review. Bioresour. Technol. 312, 123615.
Ma, J., Chen, M., Yang, T., Liu, Z., Jiao, W., Li, D., Gai, C., 2019a. Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust. Energy 173, 732-739.
Ma, X., Zhao, X., Gu, J., Shi, J., 2019b. Co-gasification of coal and biomass blends using dolomite and olivine as catalysts. Renew. Energy 132, 509-514.
Mahapatra, S., Dasappa, S., 2014. Influence of surface area to volume ratio of fuel particles on gasification process in a fixed bed. Energy for Sustainable Development 19, 122-129.
Maia, A.A.D., de Morais, L.C., 2016. Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 204, 157-163.
Manyà, J.J., Sánchez, J.L., Gonzalo, A., Arauzo, J., 2005. Air Gasification of Dried Sewage Sludge in a Fluidized Bed:  Effect of the Operating Conditions and In-Bed Use of Alumina. Energy Fuels 19, 629-636.
Mishra, G., Kumar, J., Bhaskar, T., 2015. Kinetic studies on the pyrolysis of pinewood. Bioresour. Technol. 182, 282-288.
Moon, J., Jo, W., Jeong, S., Bang, B., Choi, Y., Hwang, J., Lee, U., 2017. Gas cleaning with molten tin for hydrogen sulfide and tar in producer gas generated from biomass gasification. Energy 130, 318-326.
Mumbach, G.D., Alves, J.L.F., Da Silva, J.C.G., De Sena, R.F., Marangoni, C., Machado, R.A.F., Bolzan, A., 2019. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energy Convers. Manag. 200, 112031.
Mun, T.-Y., Kim, J.-S., 2013. Air gasification of dried sewage sludge in a two-stage gasifier. Part 2: Calcined dolomite as a bed material and effect of moisture content of dried sewage sludge for the hydrogen production and tar removal. International Journal of Hydrogen Energy 38, 5235-5242.
Mun, T.-Y., Kim, J.-W., Kim, J.-S., 2013. Air gasification of dried sewage sludge in a two-stage gasifier: Part 1. The effects and reusability of additives on the removal of tar and hydrogen production. International Journal of Hydrogen Energy 38, 5226-5234.
Ngoc Lan Thao, N.T., Chiang, K.-Y., Wan, H.-P., Hung, W.-C., Liu, C.-F., 2019. Enhanced trace pollutants removal efficiency and hydrogen production in rice straw gasification using hot gas cleaning system. Int. J. Hydrog. Energy 44, 3363-3372.
Nowicki, L., Ledakowicz, S., 2014. Comprehensive characterization of thermal decomposition of sewage sludge by TG–MS. J. Anal. Appl. Pyrolysis 110, 220-228.
Oboirien, B.O., North, B.C., 2017. A review of waste tyre gasification. J. Environ. Chem. Eng. 5, 5169-5178.
Oladejo, J., Shi, K., Luo, X., Yang, G., Wu, T., 2018. A Review of Sludge-to-Energy Recovery Methods. Energies 12, 60.
Ongen, A., Ozcan, H.K., Ozbas, E.E., 2016. Gasification of biomass and treatment sludge in a fixed bed gasifier. Int. J. Hydrog. Energy 41, 8146-8153.
Pei, H., Wang, X., Dai, X., Jin, B., Huang, Y., 2018. A novel two-stage biomass gasification concept: Design and operation of a 1.5MWth demonstration plant. Bioresour. Technol. 267, 102-109.
Peng, X., Ma, X., Lin, Y., Guo, Z., Hu, S., Ning, X., Cao, Y., Zhang, Y., 2015a. Co-pyrolysis between microalgae and textile dyeing sludge by TG–FTIR: Kinetics and products. Energy Convers. Manag. 100, 391-402.
Peng, X., Ma, X., Xu, Z., 2015b. Thermogravimetric analysis of co-combustion between microalgae and textile dyeing sludge. Bioresour. Technol. 180, 288-295.
Perejón, A., Sánchez-Jiménez, P.E., Criado, J.M., Pérez-Maqueda, L.A., 2011. Kinetic Analysis of Complex Solid-State Reactions. A New Deconvolution Procedure. J. Phys. Chem. B 115, 1780-1791.
Pham, T.T., Mai, T.D., Nguyen, M.K., Nguyen, T.L., Nguyen, N.D., Pham, T.T., 2017. Water mass balance to assess the demand for water and wastewater generated by trading groups in industrial zones. Science & Technology Development Journal - Science of The Earth & Environment 1 (M1): 79.
Qin, K., Jensen, P.A., Lin, W., Jensen, A.D., 2012. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation. Energy Fuels 26, 5992-6002.
Raheem, A., Sikarwar, V.S., He, J., Dastyar, W., Dionysiou, D.D., Wang, W., Zhao, M., 2018. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 337, 616-641.
Rakesh, N., Dasappa, S., 2018. A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies. Renew. Sust. Energ. Rev. 91, 1045-1064.
Ravenni, G., Elhami, O.H., Ahrenfeldt, J., Henriksen, U.B., Neubauer, Y., 2019. Adsorption and decomposition of tar model compounds over the surface of gasification char and active carbon within the temperature range 250–800 °C. Appl. Energy 241, 139-151.
Roche, E., de Andrés, J.M., Narros, A., Rodríguez, M.E., 2014. Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition. Fuel 115, 54-61.
Rueda-Ordóñez, Y.J., Tannous, K., 2015. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour. Technol. 196, 136-144.
Sarıoğlan, A., Durak-Çetin, Y., Okutan, H., Akgün, F., 2017. Decomposition of ammonia: The effect of syngas components on the activity of zeolite Hβ supported iron catalyst. Chem. Eng. Sci. 171, 440-450.
Schmid, M., Beirow, M., Schweitzer, D., Waizmann, G., Spörl, R., Scheffknecht, G., 2018. Product gas composition for steam-oxygen fluidized bed gasification of dried sewage sludge, straw pellets and wood pellets and the influence of limestone as bed material. Biomass Bioenergy 117, 71-77.
Schnell, M., Horst, T., Quicker, P., 2020. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manage. 263, 110367.
Schnitzer, M.I., Monreal, C.M., Facey, G.A., Fransham, P.B., 2007. The conversion of chicken manure to biooil by fast pyrolysis I. Analyses of chicken manure, biooils and char by 13C and 1H NMR and FTIR spectrophotometry. J Environ Sci Health B 42, 71-77.
Schweitzer, D., Gredinger, A., Schmid, M., Waizmann, G., Beirow, M., Spörl, R., Scheffknecht, G., 2018. Steam gasification of wood pellets, sewage sludge and manure: Gasification performance and concentration of impurities. Biomass Bioenergy 111, 308-319.
Senum, G.I., Yang, R.T., 1977. Rational approximations of the integral of the Arrhenius function. J. Therm. Anal. Calorim. 11, 445-447.
Shayan, E., Zare, V., Mirzaee, I., 2018. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 159, 30-41.
Singh, S., Wu, C., Williams, P.T., 2012. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. J. Anal. Appl. Pyrolysis 94, 99-107.
Singh Siwal, S., Zhang, Q., Sun, C., Thakur, S., Kumar Gupta, V., Kumar Thakur, V., 2020. Energy production from steam gasification processes and parameters that contemplate in biomass gasifier - A review. Bioresour. Technol. 297, 122481.
Spinosa, L., 2007. Wastewater sludge: a global overview of the current status and future prospects. IWA Publishing.
Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., Xiang, J., 2017. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sust. Energ. Rev. 80, 888-913.
Tapei City Government, 2019. Dihua sewage treatment plant, Sewage Treatment Plants. the Sewerage Systems Office of the Public Works Department, Tapei City Government, Taipei, Taiwan.
Thengane, S.K., Gupta, A., Mahajani, S.M., 2019. Co-gasification of high ash biomass and high ash coal in downdraft gasifier. Bioresour. Technol. 273, 159-168.
Tian, Y., Zhou, X., Lin, S., Ji, X., Bai, J., Xu, M., 2018. Syngas production from air-steam gasification of biomass with natural catalysts. Sci. Total Environ. 645, 518-523.
Tsutomu, I., Takashi, A., Kuniaki, K., Kikuo, O., 2004. Comparison of Removal Efficiencies for Ammonia and Amine Gases between Woody Charcoal and Activated Carbon. J. Health Sci. 50, 148-153.
Umeki, K., Häggström, G., Bach-Oller, A., Kirtania, K., Furusjö, E., 2017. Reduction of Tar and Soot Formation from Entrained-Flow Gasification of Woody Biomass by Alkali Impregnation. Energy Fuels 31, 5104-5110.
US-EPA, 1997. Procedure for collection and analysis of ammonia in stationary sources (CTM-027), Conditional Test Method.
Viet, N.T., Dieu, T.T.M., Loan, N.T.P., 2013. Current Status of Sludge Collection, Transportation and Treatment in Ho Chi Minh City. Journal of Environmental Protection Vol.04 No.12, 7.
Vuppaladadiyam, A.K., Liu, H., Zhao, M., Soomro, A.F., Memon, M.Z., Dupont, V., 2019. Thermogravimetric and kinetic analysis to discern synergy during the co-pyrolysis of microalgae and swine manure digestate. Biotechnol. Biofuels 12, 170-170.
Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N., 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1-19.
Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., Suñol, J.J., 2014. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590, 1-23.
Wang, Y., Pang, S., 2018a. Investigation of ammonia removal from the simulated producer gas of biomass gasification by H2-reduced titanomagnetite. Fuel 220, 800-809.
Wang, Y., Pang, S., 2018b. Investigation of hydrogen sulphide removal from simulated producer gas of biomass gasification by titanomagnetite. Biomass Bioenergy 109, 61-70.
Wellner, N., 2013. 6 - Fourier transform infrared (FTIR) and Raman microscopy: principles and applications to food microstructures, in: Morris, V.J., Groves, K. (Eds.), Food Microstructures. Woodhead Publishing, pp. 163-191.
Wilk, V., Hofbauer, H., 2013. Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel 107, 787-799.
Xie, C., Liu, J., Xie, W., Kuo, J., Lu, X., Zhang, X., He, Y., Sun, J., Chang, K., Xie, W., Liu, C., Sun, S., Buyukada, M., Evrendilek, F., 2018a. Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends. Renew. Energy 122, 55-64.
Xie, W., Wen, S., Liu, J., Xie, W., Kuo, J., Lu, X., Sun, S., Chang, K., Buyukada, M., Evrendilek, F., 2018b. Comparative thermogravimetric analyses of co-combustion of textile dyeing sludge and sugarcane bagasse in carbon dioxide/oxygen and nitrogen/oxygen atmospheres: Thermal conversion characteristics, kinetics, and thermodynamics. Bioresour. Technol. 255, 88-95.
Xiu, S., Shahbazi, A., Shirley, V., Cheng, D., 2010. Hydrothermal pyrolysis of swine manure to bio-oil: Effects of operating parameters on products yield and characterization of bio-oil. J. Anal. Appl. Pyrolysis 88, 73-79.
Xu, C., Donald, J., Byambajav, E., Ohtsuka, Y., 2010. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89, 1784-1795.
Xu, Y., Chen, B., 2013. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour. Technol. 146, 485-493.
Yang, G., Zhang, G., Wang, H., 2015. Current state of sludge production, management, treatment and disposal in China. Water Res. 78, 60-73.
Yang, J., Xu, X., Liang, S., Guan, R., Li, H., Chen, Y., Liu, B., Song, J., Yu, W., Xiao, K., Hou, H., Hu, J., Yao, H., Xiao, B., 2018. Enhanced hydrogen production in catalytic pyrolysis of sewage sludge by red mud: Thermogravimetric kinetic analysis and pyrolysis characteristics. Int. J. Hydrog. Energy 43, 7795-7807.
Yu, Q.Z., Brage, C., Chen, G.X., Sjöström, K., 2007. The fate of fuel-nitrogen during gasification of biomass in a pressurised fluidised bed gasifier. Fuel 86, 611-618.
Zang, G., Jia, J., Shi, Y., Sharma, T., Ratner, A., 2019. Modeling and economic analysis of waste tire gasification in fluidized and fixed bed gasifiers. Waste Management 89, 201-211.
Zang, G., Tejasvi, S., Ratner, A., Lora, E.S., 2018. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis. Bioresour. Technol. 255, 246-256.
Zhang, B., Zhang, L., Yang, Z., He, Z., 2017a. An experiment study of biomass steam gasification over NiO/Dolomite for hydrogen-rich gas production. International Journal of Hydrogen Energy 42, 76-85.
Zhang, H., Gao, Z., Ao, W., Li, J., Liu, G., Fu, J., Ran, C., Liu, Y., Kang, Q., Mao, X., Dai, J., 2017b. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor. Fuel Process. Technol. 166, 174-185.
Zhang, H., Gao, Z., Ao, W., Li, J., Liu, G., Fu, J., Ran, C., Mao, X., Kang, Q., Liu, Y., Dai, J., 2017c. Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: Char characterization and analysis. J. Hazard. Mater. 334, 112-120.
Zhang, H., Gao, Z., Liu, Y., Ran, C., Mao, X., Kang, Q., Ao, W., Fu, J., Li, J., Liu, G., Dai, J., 2018. Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals. J. Hazard. Mater. 355, 128-135.
Zhang, H.D., Gao, Z.P., Ao, W.Y., Li, J., Liu, G.Q., Fu, J., Ran, C.M., Mao, X., Kang, Q.H., Liu, Y., Dai, J.J., 2017d. Microwave-assisted pyrolysis of textile dyeing sludge using different additives. J. Anal. Appl. Pyrolysis 127, 140-149.
Zhang, Z., Xu, G., Wang, Q., Cui, Z., Wang, L., 2019. Pyrolysis characteristics, kinetics, and evolved gas determination of chrome-tanned sludge by thermogravimetry–Fourier-transform infrared spectroscopy and pyrolysis gas chromatography-mass spectrometry. Waste Manage. 93, 130-137.
Zhou, B., Dichiara, A., Zhang, Y., Zhang, Q., Zhou, J., 2018. Tar formation and evolution during biomass gasification: An experimental and theoretical study. Fuel 234, 944-953.
Zhuo, Z., Liu, J., Sun, S., Kuo, J., Sun, J., Chang, K.-L., Fu, J., 2018. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N2/CO2/O2 Atmospheres and its Combustion Model with Coal. Water Environ. Res 90, 30-41.
指導教授 江康鈺 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明