參考文獻 |
Abdel-Salam, M., A. Mizuno, and K. Shimizu, Ozone generation as influenced by gas flow in corona reactors, Journal of Physics D: Applied Physics, 30, 864-870 (1997).
Asahi, R., and T. Morikawa, Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis, Chemical Physics, 339, 57–63 (2007).
Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-Light Photocatalysis in Nitrogen-doped titanium oxides, Science, 293(5528), 269 (2001).
Beck, J.S., J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, and E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 144(27), 0834-10843 (1992).
Bourikas, K., C. Kordulis, and A. Lycourghiotis, Titanium dioxide (anatase and rutile): surface chemistry, liquid solid interface chemistry, and scientific synthesis of supported catalysts, Chemical Reviews, 114, 9, 754-823 (2014).
Brueggemann, N., T. Puehmeier, R. Fiekens, F.J. Richardt, and M. Salvermoser, Cooling conditions of ozone generators, Ozone: Science and Engineering, 196-201 (2017).
Bruno, L., A.R. David, and B. Deborah, Ozone in water treatment - Application and Engineering, CRC Pr I Llc (1991).
Chang, J.S., K.G. Kostov, K. Urashima, T. Yamamoto, Y. Okayasu, T. Kato, T. Iwaizumi, and K. Yoshimura, Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems, IEEE Transactions on Industry Applications, 36, 1251 (2000).
Chang, M.B., and S.J. Wu, Experimental study on ozone synthesis via dielectric barrier discharges, Ozone: Science and Engineering, 19, 241-254 (1997).
Chen, B., C. Shi, M. Crocker, Y. Wang, and A. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts, Applied Catalysis B: Environmental, 132-133, 245-255 (2013).
Chen, H.L., H.M. Lee, S.H. Chen, M.B. Chang, S.J. Yu, and S.N. Li, Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications, Environmental Science and Technology, 43, 2216-2277 (2009).
Chen, H.L., H.M. Lee, and M.B. Chang, Enhancement of energy yield for ozone production via packed-bed reactors, Ozone: Science and Engineering, 28, 111–118 (2006).
Chen, H.L., H.M. Lee, S.H. Chen, and M.B. Chang, Review of packed-bed plasma reactor for ozone generation and air pollution control, Industrial and Engineering Chemistry Research, 47, 2122-2130 (2008).
Chen, H.L., H.M. Lee, S.H. Chen, T.H. Wei, and M.B. Chang, Influence of Ar addition on ozone generation in non-thermal plasmas, Plasma Sources Science and Technology, 19, 065009 (2010).
Chen, H.L., H.M. Lee, S.H. Chen, T.H. Wei, and M.B. Chang, Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation, Plasma Sources Science and Technology, 19, 055009 (2010).
Chen, X.B., L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, 746-750 (2011).
Cheng, J.S., K.G. Kostov, K. Urashima, T. Yamamoto, Y. Okayasu, T. Kato, T. Iwaizumi, and K. Yoshimura, Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems, IEEE Transactions on Industry Applications, 36, 1251-1259 (2000).
Chirokov, A., A. Gutsol, and A. Fridman, Atomspheric pressure plasma of dielectric barrier discharges, Pure and Applied Chemistry, 77, 487-495 (2005).
Christensen, P.A., T. Yonar, and K. Zakaria, The electrochemical generation of ozone: a review, Ozone: Science and Engineering, 35, 149–167 (2013).
Cieplak, T., C. Yamabe, S. Ihara, S. Satoh, J. Pawlat, J. Cieplak, and I. Pollo, Ozone generation using plate rotating electrode ozonizer-Effect of electrode rotation and discharge analysis method, Ozone: Science and Engineering, 22, 563–574 (2000).
Diaz, R., A. Marquez, D. Menendez, and R. Perez, Medium frequency pulse train ozone generation, Ozone: Science and Engineering, 21, 635–642 (1999).
Dimitriou, M.A., Design guidance manual for ozone systems, IOA Pan American Committee (1990).
Dohan, J.M., and W.J. Masschelein, The photochemical generation of ozone : present state of the art, Ozone: Science and Engineering, 9, 4, 315-334 (1987).
Eliasson, B., U. Kogelshartz, and P. Baessler, Dissociation of O2 in N2/O2 mixtures, Journal of Physics B: Atomic, Molecular and Optical Physics, 17, 797-801 (1984).
Eliasson, B., and U. Kogelschatz, Modeling and applcations of silent discharge plasmas, IEEE Transaction Plasma Science, 19, 303-323 (1991).
Eliasson, B., and U. Kogelschatz, Ozone generation with narrow–band UV radiation, Ozone: Science and Engineering, 13, 3, 365-373 (1991).
Eliasson, B., M. Hirth, and U. Kogelschatz, Ozone synthesis from oxygen in dielectric barrier discharge, Journal of Physics D: Applied Physics, 20, 1421 (1987).
Fang, R., M. He, H. Huang, Q. Feng, J. Ji, Y. Zhan, D.Y.C. Leung, and W. Zhao, Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature, Chemosphere, 213, 235-243 (2018).
Fujishima, A., T.N. Rao, and D.A.J. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000).
Garamoon, A.A., F. Elakshar, A.M. Nossair, and E.F. Kotp, Experimental study of ozone synthesis, Plasma Sources Sicence Technology, 11, 254-259 (2002).
Holzer, F., F.D. Kopinke, and U. Roland, Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants, Plasma Chemistry Plasma Process, 25, 595 (2005).
Homola, T., B. Pongrác, M. Zemánek1, and M. Šimek, Efficiency of ozone production in coplanar dielectric barrier discharge, Plasma Chemistry and Plasma Processing, 39, 1227–1242 (2019).
Hori, H., K. Koike, Y. Suzuki, M. Ishizuka, J. Tanaka, K. Takeuchi, and Y. Sasaki, High-pressure photocatalytic reduction of carbon dioxide using [fac-Re(bpy)(CO)3P(OiPr)3]+, Journal of Molecular Catalysis A: Chemical, 179, 1–9 (2002).
Huang, W., T. Ren, and W. Xia, Ozone generation by hybrid discharge combined with catalysis, Ozone: Science and Engineering, 29, 107-112 (2007).
Jodzis, S., Effective ozone generation in oxygen using a mesh electrode in an ozonizer with variable linear velocity, Ozone: Science and Engineering, 34, 378-386 (2012).
Jodzis, S., Effect of silica packing on ozone synthesis from oxygen-nitrogen mixtures, Ozone: Science and Engineering, 25, 63-72 (2003).
Kajita, S., S. Ushiroda, and Y. Kondo, High pressure low temperature plasma chemistry, Institute of Electrical Engineers of Japan, Fuji-Hakone Land, 71-87 (1987).
Kitano, M., M. Matsuoka, M. Ueshima, and M. Anpo, Recent developments in titanium oxide-based photocatalysts, Applied Catalysis A: General, 325, 1–14 (2007).
Kitayama, J., and M. Kuzumoto, Analysis of ozone generation from air in silent discharge, Journal of Physics D: Applied Physics, 23, 3032-3040 (1999).
Kitayama, J., and M. Kuzumoto, Theoretical and experimental study on ozone generation characteristics of an oxygen-fed ozone generator in silent discharge, Journal of Physics D: Applied Physics, 30, 2453-2461 (1997).
Kogelschatz, U., B. Eliasson, and M. Hirth, Ozone generation from oxygen and air. discharge physics and reaction mechanisms, Ozone: Science and Engineering, 10, 367-378 (1988).
Langlais, B., D.A. Reckhow, and D.R. Brink, Ozone in water treatment application and engineering, AWWA Research Foundation and Lewis, 101-103 (1991).
Lee, H.M., M.B. Chang, and T.C. Wei, Kinetic modeling of ozone generation via dielectric barrier discharges, Ozone: Science and Engineering, 26, 551-562 (2004).
Li, M., Y. Yan, Q. Jin, M. Liu, B. Zhu, L. Wang, T. Li, X.J. Tang, and X.Y. Zhu, Experimental study on ozone generation from oxygen in double surface dielectric barrier discharge, Vacuum, 157, 249-258 (2018).
Lieberman, M.A., and A.J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley and Sons. Inc, ISBN, 757 (1994).
Linsebigler, L.A., G. Lu, and T.J. Yates, Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95, 735-758 (1995).
Liu, L.M., P. Crawford, and P. Hu, The interaction between adsorbed OH and O2 on TiO2 surfaces, Progress in Surface Science, 84, 155-176, (2009).
Malik, M.A., Ozone synthesis using shielded sliding discharge: effect of oxygen content and positive versus negative streamer mode, Industrial and Engineering Chemistry Research, 53, 12305-12311 (2014).
Manning, T.J., Ozone: production of ozone in an electrical discharge using inert gases as catalysts, Ozone: Science and Engineering, 22, 53 (2000).
Meidensha Corporation, Pure ozone generator (high-concentration ozone gas generator), Engineering Business Unit, Pure Ozone Generator Business Development Division, Japan (2019).
Moon, J.D., and S.T. Geum, Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier, IEEE Transactions on Industry Applications, 34, 1206 (1998).
Moras, D., P. Uhlig, J.F. Petitinbert, C.H. Henery and L. Ayad, High concentration ozone generation, Proceedings of 11th world ozone congress (1993).
Murphy, A.B., and R. Morrow, An experimental assessment of glass-bead discharge ozonisers, IUPAC 15th International Symposium on Plasma Chemistry, Symposium Proceedings, Volume VII Poster Contributions, 3103-3108 (2001).
Nemmich, S., A. Tilmatine, Z. Dey, N. Hammadi, K. Nassour, and S. Messal, Optimal sizing of a DBD ozone generator using response surface modeling, Ozone: Science and Engineering, 37, 3-8 (2015).
Nomoto, Y., T. Ohkubo, S. Kanazawa, and T. Adachi, Improvement of ozone yield by a silent-surface hybrid discharge ozonizer, IEEE Transactions on Industry Applications, 31(6), 1458-1462 (1995).
Ogata, A., H. Einage, H. Kabashima, S. Futamura, S. Kushiyama, and H.H. Kim, Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air, Applied Catalysis B: Environmental, 46, 87-95 (2003).
Ogata, A., N. Shintani, K. Mizono, S. Kushiyama, and T. Yamamoto, Decomposition of benzene using a non-thermal plasma reactor packed with ferroelectric pellets, IEEE Transactions on Industry Applications, 35, 753 (1999).
Ohe, K., K. Kamiya, and T. Kimura, Improvement of ozone yielding rate in atmospheric pressure barrier discharges using a time-modulated power supply, IEEE Transactions on Plasma Science, 27(6), 1582-1587 (1999).
Ohsawa, A., R. Morrow, and A.B. Murphy, An investigation of a DC dielectric barrier discharge using a disc of glass beads. Journal of Physics D: Applied Physics, 33, 1487 (2000).
Pekarek, S., J. Mikes, and J. Krysa, Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air, Catalysis, 502, 122-128 (2015).
Pekárek, S., Non-thermal plasma ozone generation, Acta Polytech, 43, 47-51 (2003).
Philip, J.B., An introduction to ozone generation, Watertec Engineering Pty Ltd (1994).
RamezaniSani, S., M. Rajabi, and F. Mohseni, Influence of nitrogen doping on visible light photocatalytic activity of TiO2 nanowires with anatase-rutile junction, Chemical Physics Letters, 744, 137-217, (2020).
Rip, R.G, and A. Netzer, Handbook of ozone technology and application, ISBN, 325 (1982).
Roland, U., F. Holzer, and F.D. Kopinke, Improved oxidation of air pollutants in a non-thermal plasma, Catalysis Today, 73, 315 (2002).
Samaranayake, W.J.M., Y. Miyahara, S. Narmihira, and S. Katsuke, Ozone generation in dry air using pulsed discharge with and without a solid dielectric layer, IEEE Transactions on Dielectrics and Electrical Insulation, 8, 687-697 (2001).
Samaranayake, W.J.M., Y. Miyahara, T. Namihira, S. Katsuki, R. Hackam, and H. Akiyama, Ozone production using pulsed dielectric barrier discharge in oxygen, IEEE Transactions on Dielectrics and Electrical Insulation, 7(6), 849-854 (2000).
Sato, S., Photocatalytic activity of NOx-doped TiO2 in the visible light region, Chemical Physics Letters, 123, 126-128 (1986).
Schmidt-Szalowski, K., and A. Borucka, Heterogeneous effects in the process of ozone synthesis in electrical discharges, Plasma Chemistry and Plasma Processing, 9, 2 (1989).
Schmidt-Szalowski, K., A. Borucka, and S. Jodzis, Catalytic activity of silica in ozone formation in electrical discharges, Plasma Chemistry and Plasma Processing, 10(3), 443-450 (1990).
Schmidt-Szalowski, K., Catalytic properties of silica packings under ozone synthesis conditions, Ozone: Science and Engineering, 18, 41 (1996).
Seok, D.C., H.Y. Jeong, Y.H. Jung, and T. Lho, Optimizing factors on high concentration of ozone production with dielectric barrier discharge, Ozone: Science and Engineering, 37, 221–226 (2015).
Skalny J.D., T. Mikoviny, N.J. Mason and V. Sobek, The effect of gaseous diluents on ozone generation from oxygen, Ozone: Science and Engineering, 24, 29 (2002).
Smith, W., Principles of ozone generation, Watertec Engineering Pty Ltd (2015).
Soltanabadi, Y., M. Jourshabani, and Z. Shariatinia, Synthesis of novel CuO/LaFeO3 nanocomposite photocatalysts with superior Fenton-like and visible light photocatalytic activities for degradation of aqueous organic contaminants, Separation and Purification Technology, 202, 227-241 (2018).
Sung, Y.M., and T. Sakoda, Optimum conditions for ozone formation in a micro dielectric barrier discharge, Surface Coating. Technology, 197, 148-153 (2005).
Takai, K., J.S. Chang, and K.G. Kostov, Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reator part I : Modeling, IEEE Transactions on Delectrics and Electrical Insulation, 11, 481-490 (2004).
Teranishi, K., N. Shimomura, S. Suzuki, and K. Itoh, Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: Effect of dielectric electrode materials on ozone generation, Plasma Sources Science and Technology, 18 (2009).
Ullattil, S.G., S.B. Narendranath, S.C. Pillai, and P. Periyat, Black TiO2 nanomaterials: A review of recent advance, Chemical Engineering Journal, 343, 708-736 (2018).
Wang, J., G. Zhang, and P. Zhang, Layered birnessite-type MnO2 with surface pits for the enhanced formaldehyde catalytic oxidation activity, Journal of Materials Chemistry, 5, 5719-5725 (2017).
Wu, Z., F. Dong, Y. Liu, and H. Wang, Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V2O5, Catalysis Communications, 11, 82-86 (2009).
Xia, Y., H. Dai, L. Zhang, J. Deng, H. He, and C.T. Au, Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol, Applied Catalysis B: Environmental, 100, 229-237 (2010).
Yamamoto, T., J.S. Chang, A.A. Berezin, H. Kohno, S. Honda, and A. Shibuya, Decomposition of toluene, o-xylene, trichloroethylene, and their mixture using a BaTiO3 packed-bed plasma reactor. Journal of Advanced Oxidation Technologies, 1, 67 (1996).
Yamamoto, T., B.S. Rajanikanth, M. Okubo, T. Kuroki, and M. Nishino, Performance evaluation of non-thermal plasma reactors for NOx oxidation in diesel engine exhaust gas stream, IEEE Transactions on Industry Applications, 39, 1608 (2003).
Yuan, D.K., C. Ding, Y. He, Z.H. Wang, S. Kumar, Y.Q. Zhu, and K.F. Cen, Characteristics of dielectric barrier discharge ozone synthesis for different pulse modes, Plasma Chemistry and Plasma Processing, 37, 1165-1173 (2017).
Yuan, D.K., Z.H. Wang, C. Ding, Y. He, R. Whiddon, and K.F. Cen, Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure, Journal of Physics D: Applied Physics, 49, 203-455 (2016).
司洪濤、呂冠霖、黃香玫,氧化技術在高濃度COD廢水處理之應用,財團法人台灣產業服務基金會 (2008)。
童保舜,電漿驅動器臭氧生成之研究,國立中央大學環境工程研究所碩士論文,台灣 (2012)。
李灝銘、張木彬,電漿處理技術於環境工程之應用與發展趨勢 (2004)。
潘冠綸,Double perovskite-type觸媒結合非熱電漿去除揮發性有機污染物之可行性探討,國立中央大學環境工程研究所博士論文,台灣 (2017)。
王竣仟、吳逢彬、戴愷含、曾霈軒、黃建民,鍛燒溫度對二氧化鈦光電催化降解染料之影響,朝陽科技大學環境工程與管理系,台灣 (2011)。
熊家林、貢長生、張克立,無機精細化學品的製備和應用,化學工業出版社 (1999)。
申泮文、車雲霞,無機化學叢書,科學出版社 (1998)。
楊超棨,介電質常壓電漿產生器之開發及其質譜分析之應用,國立中山大學機械與機電工程研究所碩士論文 (2010)。
李昀恩,以LaFeO3/Black-TiO2行光催化反應以去除甲苯及異丙醇之可行性探討,國立中央大學碩士論文 (2018)。 |