博碩士論文 107326015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.147.61.218
姓名 儲憶凡(Yi-Fan Chu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以電漿觸媒系統提升臭氧生成效率之可行性評估
(Enhancement of Ozone Generation Efficiency via Plasma Catalysis)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臭氧(O3)具有強氧化能力,常被用於消毒、殺菌、廢水及空污處理等方面,然而生成臭氧之操作成本偏高,此為瓶頸所在。本研究擬發展觸媒結合電漿系統進行臭氧合成,研發低能耗高產率之臭氧生成技術。本研究選擇使用直徑同為3 mm的玻璃珠、氧化鋁球、矽膠顆粒及不規則形之二氧化鈦顆粒作為填充介電質進行比較,研究結果顯示填充TiO2有最佳性能,最高臭氧濃度為73 gO3/m3;最佳能效達140 gO3/kWh,因其優勢尚包括: (1)介電常數較高加上使用金紅石晶相,比起一般使用的銳鈦礦TiO2有更高的介電常數(達約110-117),(2)較高的光強度吸收特性,(3)光催化作用,而實驗最佳參數為操作電壓18 kV、頻率15 kHz、放電長度200 mm及放電間隙6 mm;後續研究於相同的操作條件下,加裝冷卻系統降低系統溫度,進一步增加臭氧生成濃度。為探討進氣氣體組成不同之影響,將二氧化鈦顆粒改質之觸媒使可見光吸收增加以利較佳的光催化活性,結果顯示添加少量的氮氣及氬氣並未有效提升臭氧生成濃度。眾觸媒中以改質之觸媒填充於電漿反應系統中有最佳效能且有良好的穩定度,其最高能量效率為415 gO3/kWh,優於國際大部分的研究,此觸媒可有效提升電漿觸媒系統之效能以優化臭氧生成反應。
摘要(英) With an oxidation potential second only to fluorine, ozone is a strong oxidizing agent that has been applied in many areas such as water disinfection, flue gas treatment, food processing, indoor air cleaning, and so forth. However, the cost of ozone generators is still high. Combination of non-thermal plasma (NTP) with heterogeneous catalysis, referred to as plasma-catalysis, has gained much interest during the last 20 years. However, few works on O3 generation via plasma catalyst system have been reported. In this work, a novel catalyst-based plasma system for ozone generation was developed. Based on the analysis of different operating parameters and catalyst surface characteristics, the mechanism of ozone synthesis in plasma catalytic system is discussed. In this study, glass beads, alumina balls, silicone and titanium dioxide with the same diameter of 3 mm were used as filled dielectric materials for comparison. The results indicate that TiO2 has better performance and higher ozone concentration of 73 gO3 / m3. The highest energy efficiency is 140 gO3 / kWh. The advantages of TiO2-based compared to others include: (1) higher dielectric constant (up to about 110-117), (2)the higher light intensity absorption characteristics, (3)the photocatalytic mechanism. Factors that affect the ozone production efficiency and concentration are studied, and the best operating parameters of the experiment contain the applied voltage of 18 kV, the frequency of 15 kHz, the discharge length of 200 mm and the discharge gap of 6 mm. Subsequent research under the same operating conditions, the installation of a cooling system reduces system temperature, which increases ozone generation concentration. The follow-up experiment was to explore the influence of different feed gas composition, and further modify the titanium dioxide particles to form the modified TiO2 catalyst, which increase the absorption of visible light to facilitate photocatalytic activity. Nitrogen can slightly increase the ozone concentration, but a small amount of argon doesn’t increase the ozone concentration. Compared with the different catalysts, filling modified TiO2 in the plasma reaction system has the best performance and stability. The maximum energy efficiency of the plasma catalysis system is 415 gO3 / kWh, which has better energy efficiency than most studies. Therefore, it is believed that this catalyst can effectively improve the efficiency of the plasma catalysis system for ozone generation.
關鍵字(中) ★ 臭氧
★ 可見光
★ 電漿觸媒系統
★ 改質二氧化鈦
★ 觸媒顆粒
關鍵字(英) ★ Ozone
★ Visible light
★ Plasma catalysis system
★ Catalyst particles
★ Black-TiO2
論文目次 摘要 i
Abstract ii
圖目錄 vii
表目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究動機 2
1.3 研究目的 2
第二章 文獻回顧 3
2.1 臭氧應用之現況及限制 3
2.2 臭氧生成技術 4
2.2.1 電解 (electrolysis) 4
2.2.2 紫外光照射 (UV light) 5
2.2.3 電漿 (plasma) 6
2.3 電漿技術用於臭氧生成 8
2.3.1 介電質放電法 (dielectric barrier discharge, DBD) 9
2.4 臭氧在DBD反應器中主要生成及分解機制 12
2.5 Plasma Catalysis系統用於臭氧生成 15
2.5.1 操作參數之影響 20
2.5.2 反應機制探討 30
2.6 光觸媒 38
2.6.1 光觸媒特性 38
2.6.2 二氧化鈦結構及性質 40
2.6.3 二氧化鈦之改質 (Black-TiO2) 43
第三章 研究方法 47
3.1 研究流程及架構 47
3.2 觸媒選擇及製備 50
3.2.1 觸媒材料選擇 50
3.2.2 觸媒製備 50
3.2.3 二氧化鈦改質 51
3.3 觸媒之物化特性分析 52
3.4 分析方法 54
3.4.1 活性測試 55
3.5 實驗結果計算 62
第四章 結果與討論 63
4.1 操作參數對反應系統之探討 63
4.1.1 放電長度對於臭氧濃度之影響 63
4.1.2 操作電壓對放電功率之影響 64
4.1.3 放電電壓及頻率之影響 65
4.1.4 放電間隙之影響 67
4.1.5 氣體流量之影響 69
4.2 Plasma catalysis系統進行臭氧生成之反應 71
4.2.1 填充不同觸媒之比較 71
4.2.2 操作電壓對Plasma catalysis系統生成臭氧之影響 74
4.2.3 Plasma catalysis系統生成臭氧之再現性實驗 78
4.3 加裝冷卻系統之影響 79
4.4 進氣組成對臭氧生成之影響 81
4.5 Black-TiO2對臭氧生成濃度之影響 83
4.5.1 Black-TiO2之觸媒特性分析 86
4.5.2 能量效率評估 90
第五章 結論與建議 92
5.1 結論 92
5.2 建議 94
參考文獻 95
參考文獻 Abdel-Salam, M., A. Mizuno, and K. Shimizu, Ozone generation as influenced by gas flow in corona reactors, Journal of Physics D: Applied Physics, 30, 864-870 (1997).
Asahi, R., and T. Morikawa, Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis, Chemical Physics, 339, 57–63 (2007).
Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-Light Photocatalysis in Nitrogen-doped titanium oxides, Science, 293(5528), 269 (2001).
Beck, J.S., J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, and E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society, 144(27), 0834-10843 (1992).
Bourikas, K., C. Kordulis, and A. Lycourghiotis, Titanium dioxide (anatase and rutile): surface chemistry, liquid solid interface chemistry, and scientific synthesis of supported catalysts, Chemical Reviews, 114, 9, 754-823 (2014).
Brueggemann, N., T. Puehmeier, R. Fiekens, F.J. Richardt, and M. Salvermoser, Cooling conditions of ozone generators, Ozone: Science and Engineering, 196-201 (2017).
Bruno, L., A.R. David, and B. Deborah, Ozone in water treatment - Application and Engineering, CRC Pr I Llc (1991).
Chang, J.S., K.G. Kostov, K. Urashima, T. Yamamoto, Y. Okayasu, T. Kato, T. Iwaizumi, and K. Yoshimura, Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems, IEEE Transactions on Industry Applications, 36, 1251 (2000).
Chang, M.B., and S.J. Wu, Experimental study on ozone synthesis via dielectric barrier discharges, Ozone: Science and Engineering, 19, 241-254 (1997).
Chen, B., C. Shi, M. Crocker, Y. Wang, and A. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts, Applied Catalysis B: Environmental, 132-133, 245-255 (2013).
Chen, H.L., H.M. Lee, S.H. Chen, M.B. Chang, S.J. Yu, and S.N. Li, Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications, Environmental Science and Technology, 43, 2216-2277 (2009).
Chen, H.L., H.M. Lee, and M.B. Chang, Enhancement of energy yield for ozone production via packed-bed reactors, Ozone: Science and Engineering, 28, 111–118 (2006).
Chen, H.L., H.M. Lee, S.H. Chen, and M.B. Chang, Review of packed-bed plasma reactor for ozone generation and air pollution control, Industrial and Engineering Chemistry Research, 47, 2122-2130 (2008).
Chen, H.L., H.M. Lee, S.H. Chen, T.H. Wei, and M.B. Chang, Influence of Ar addition on ozone generation in non-thermal plasmas, Plasma Sources Science and Technology, 19, 065009 (2010).
Chen, H.L., H.M. Lee, S.H. Chen, T.H. Wei, and M.B. Chang, Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation, Plasma Sources Science and Technology, 19, 055009 (2010).
Chen, X.B., L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, 746-750 (2011).
Cheng, J.S., K.G. Kostov, K. Urashima, T. Yamamoto, Y. Okayasu, T. Kato, T. Iwaizumi, and K. Yoshimura, Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems, IEEE Transactions on Industry Applications, 36, 1251-1259 (2000).
Chirokov, A., A. Gutsol, and A. Fridman, Atomspheric pressure plasma of dielectric barrier discharges, Pure and Applied Chemistry, 77, 487-495 (2005).
Christensen, P.A., T. Yonar, and K. Zakaria, The electrochemical generation of ozone: a review, Ozone: Science and Engineering, 35, 149–167 (2013).
Cieplak, T., C. Yamabe, S. Ihara, S. Satoh, J. Pawlat, J. Cieplak, and I. Pollo, Ozone generation using plate rotating electrode ozonizer-Effect of electrode rotation and discharge analysis method, Ozone: Science and Engineering, 22, 563–574 (2000).
Diaz, R., A. Marquez, D. Menendez, and R. Perez, Medium frequency pulse train ozone generation, Ozone: Science and Engineering, 21, 635–642 (1999).
Dimitriou, M.A., Design guidance manual for ozone systems, IOA Pan American Committee (1990).
Dohan, J.M., and W.J. Masschelein, The photochemical generation of ozone : present state of the art, Ozone: Science and Engineering, 9, 4, 315-334 (1987).
Eliasson, B., U. Kogelshartz, and P. Baessler, Dissociation of O2 in N2/O2 mixtures, Journal of Physics B: Atomic, Molecular and Optical Physics, 17, 797-801 (1984).
Eliasson, B., and U. Kogelschatz, Modeling and applcations of silent discharge plasmas, IEEE Transaction Plasma Science, 19, 303-323 (1991).
Eliasson, B., and U. Kogelschatz, Ozone generation with narrow–band UV radiation, Ozone: Science and Engineering, 13, 3, 365-373 (1991).
Eliasson, B., M. Hirth, and U. Kogelschatz, Ozone synthesis from oxygen in dielectric barrier discharge, Journal of Physics D: Applied Physics, 20, 1421 (1987).
Fang, R., M. He, H. Huang, Q. Feng, J. Ji, Y. Zhan, D.Y.C. Leung, and W. Zhao, Effect of redox state of Ag on indoor formaldehyde degradation over Ag/TiO2 catalyst at room temperature, Chemosphere, 213, 235-243 (2018).
Fujishima, A., T.N. Rao, and D.A.J. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000).
Garamoon, A.A., F. Elakshar, A.M. Nossair, and E.F. Kotp, Experimental study of ozone synthesis, Plasma Sources Sicence Technology, 11, 254-259 (2002).
Holzer, F., F.D. Kopinke, and U. Roland, Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants, Plasma Chemistry Plasma Process, 25, 595 (2005).
Homola, T., B. Pongrác, M. Zemánek1, and M. Šimek, Efficiency of ozone production in coplanar dielectric barrier discharge, Plasma Chemistry and Plasma Processing, 39, 1227–1242 (2019).
Hori, H., K. Koike, Y. Suzuki, M. Ishizuka, J. Tanaka, K. Takeuchi, and Y. Sasaki, High-pressure photocatalytic reduction of carbon dioxide using [fac-Re(bpy)(CO)3P(OiPr)3]+, Journal of Molecular Catalysis A: Chemical, 179, 1–9 (2002).
Huang, W., T. Ren, and W. Xia, Ozone generation by hybrid discharge combined with catalysis, Ozone: Science and Engineering, 29, 107-112 (2007).
Jodzis, S., Effective ozone generation in oxygen using a mesh electrode in an ozonizer with variable linear velocity, Ozone: Science and Engineering, 34, 378-386 (2012).
Jodzis, S., Effect of silica packing on ozone synthesis from oxygen-nitrogen mixtures, Ozone: Science and Engineering, 25, 63-72 (2003).
Kajita, S., S. Ushiroda, and Y. Kondo, High pressure low temperature plasma chemistry, Institute of Electrical Engineers of Japan, Fuji-Hakone Land, 71-87 (1987).
Kitano, M., M. Matsuoka, M. Ueshima, and M. Anpo, Recent developments in titanium oxide-based photocatalysts, Applied Catalysis A: General, 325, 1–14 (2007).
Kitayama, J., and M. Kuzumoto, Analysis of ozone generation from air in silent discharge, Journal of Physics D: Applied Physics, 23, 3032-3040 (1999).
Kitayama, J., and M. Kuzumoto, Theoretical and experimental study on ozone generation characteristics of an oxygen-fed ozone generator in silent discharge, Journal of Physics D: Applied Physics, 30, 2453-2461 (1997).
Kogelschatz, U., B. Eliasson, and M. Hirth, Ozone generation from oxygen and air. discharge physics and reaction mechanisms, Ozone: Science and Engineering, 10, 367-378 (1988).
Langlais, B., D.A. Reckhow, and D.R. Brink, Ozone in water treatment application and engineering, AWWA Research Foundation and Lewis, 101-103 (1991).
Lee, H.M., M.B. Chang, and T.C. Wei, Kinetic modeling of ozone generation via dielectric barrier discharges, Ozone: Science and Engineering, 26, 551-562 (2004).
Li, M., Y. Yan, Q. Jin, M. Liu, B. Zhu, L. Wang, T. Li, X.J. Tang, and X.Y. Zhu, Experimental study on ozone generation from oxygen in double surface dielectric barrier discharge, Vacuum, 157, 249-258 (2018).
Lieberman, M.A., and A.J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley and Sons. Inc, ISBN, 757 (1994).
Linsebigler, L.A., G. Lu, and T.J. Yates, Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews, 95, 735-758 (1995).
Liu, L.M., P. Crawford, and P. Hu, The interaction between adsorbed OH and O2 on TiO2 surfaces, Progress in Surface Science, 84, 155-176, (2009).
Malik, M.A., Ozone synthesis using shielded sliding discharge: effect of oxygen content and positive versus negative streamer mode, Industrial and Engineering Chemistry Research, 53, 12305-12311 (2014).
Manning, T.J., Ozone: production of ozone in an electrical discharge using inert gases as catalysts, Ozone: Science and Engineering, 22, 53 (2000).
Meidensha Corporation, Pure ozone generator (high-concentration ozone gas generator), Engineering Business Unit, Pure Ozone Generator Business Development Division, Japan (2019).
Moon, J.D., and S.T. Geum, Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier, IEEE Transactions on Industry Applications, 34, 1206 (1998).
Moras, D., P. Uhlig, J.F. Petitinbert, C.H. Henery and L. Ayad, High concentration ozone generation, Proceedings of 11th world ozone congress (1993).
Murphy, A.B., and R. Morrow, An experimental assessment of glass-bead discharge ozonisers, IUPAC 15th International Symposium on Plasma Chemistry, Symposium Proceedings, Volume VII Poster Contributions, 3103-3108 (2001).
Nemmich, S., A. Tilmatine, Z. Dey, N. Hammadi, K. Nassour, and S. Messal, Optimal sizing of a DBD ozone generator using response surface modeling, Ozone: Science and Engineering, 37, 3-8 (2015).
Nomoto, Y., T. Ohkubo, S. Kanazawa, and T. Adachi, Improvement of ozone yield by a silent-surface hybrid discharge ozonizer, IEEE Transactions on Industry Applications, 31(6), 1458-1462 (1995).
Ogata, A., H. Einage, H. Kabashima, S. Futamura, S. Kushiyama, and H.H. Kim, Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air, Applied Catalysis B: Environmental, 46, 87-95 (2003).
Ogata, A., N. Shintani, K. Mizono, S. Kushiyama, and T. Yamamoto, Decomposition of benzene using a non-thermal plasma reactor packed with ferroelectric pellets, IEEE Transactions on Industry Applications, 35, 753 (1999).
Ohe, K., K. Kamiya, and T. Kimura, Improvement of ozone yielding rate in atmospheric pressure barrier discharges using a time-modulated power supply, IEEE Transactions on Plasma Science, 27(6), 1582-1587 (1999).
Ohsawa, A., R. Morrow, and A.B. Murphy, An investigation of a DC dielectric barrier discharge using a disc of glass beads. Journal of Physics D: Applied Physics, 33, 1487 (2000).
Pekarek, S., J. Mikes, and J. Krysa, Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air, Catalysis, 502, 122-128 (2015).
Pekárek, S., Non-thermal plasma ozone generation, Acta Polytech, 43, 47-51 (2003).
Philip, J.B., An introduction to ozone generation, Watertec Engineering Pty Ltd (1994).
RamezaniSani, S., M. Rajabi, and F. Mohseni, Influence of nitrogen doping on visible light photocatalytic activity of TiO2 nanowires with anatase-rutile junction, Chemical Physics Letters, 744, 137-217, (2020).
Rip, R.G, and A. Netzer, Handbook of ozone technology and application, ISBN, 325 (1982).
Roland, U., F. Holzer, and F.D. Kopinke, Improved oxidation of air pollutants in a non-thermal plasma, Catalysis Today, 73, 315 (2002).
Samaranayake, W.J.M., Y. Miyahara, S. Narmihira, and S. Katsuke, Ozone generation in dry air using pulsed discharge with and without a solid dielectric layer, IEEE Transactions on Dielectrics and Electrical Insulation, 8, 687-697 (2001).
Samaranayake, W.J.M., Y. Miyahara, T. Namihira, S. Katsuki, R. Hackam, and H. Akiyama, Ozone production using pulsed dielectric barrier discharge in oxygen, IEEE Transactions on Dielectrics and Electrical Insulation, 7(6), 849-854 (2000).
Sato, S., Photocatalytic activity of NOx-doped TiO2 in the visible light region, Chemical Physics Letters, 123, 126-128 (1986).
Schmidt-Szalowski, K., and A. Borucka, Heterogeneous effects in the process of ozone synthesis in electrical discharges, Plasma Chemistry and Plasma Processing, 9, 2 (1989).
Schmidt-Szalowski, K., A. Borucka, and S. Jodzis, Catalytic activity of silica in ozone formation in electrical discharges, Plasma Chemistry and Plasma Processing, 10(3), 443-450 (1990).
Schmidt-Szalowski, K., Catalytic properties of silica packings under ozone synthesis conditions, Ozone: Science and Engineering, 18, 41 (1996).
Seok, D.C., H.Y. Jeong, Y.H. Jung, and T. Lho, Optimizing factors on high concentration of ozone production with dielectric barrier discharge, Ozone: Science and Engineering, 37, 221–226 (2015).
Skalny J.D., T. Mikoviny, N.J. Mason and V. Sobek, The effect of gaseous diluents on ozone generation from oxygen, Ozone: Science and Engineering, 24, 29 (2002).
Smith, W., Principles of ozone generation, Watertec Engineering Pty Ltd (2015).
Soltanabadi, Y., M. Jourshabani, and Z. Shariatinia, Synthesis of novel CuO/LaFeO3 nanocomposite photocatalysts with superior Fenton-like and visible light photocatalytic activities for degradation of aqueous organic contaminants, Separation and Purification Technology, 202, 227-241 (2018).
Sung, Y.M., and T. Sakoda, Optimum conditions for ozone formation in a micro dielectric barrier discharge, Surface Coating. Technology, 197, 148-153 (2005).
Takai, K., J.S. Chang, and K.G. Kostov, Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reator part I : Modeling, IEEE Transactions on Delectrics and Electrical Insulation, 11, 481-490 (2004).
Teranishi, K., N. Shimomura, S. Suzuki, and K. Itoh, Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: Effect of dielectric electrode materials on ozone generation, Plasma Sources Science and Technology, 18 (2009).
Ullattil, S.G., S.B. Narendranath, S.C. Pillai, and P. Periyat, Black TiO2 nanomaterials: A review of recent advance, Chemical Engineering Journal, 343, 708-736 (2018).
Wang, J., G. Zhang, and P. Zhang, Layered birnessite-type MnO2 with surface pits for the enhanced formaldehyde catalytic oxidation activity, Journal of Materials Chemistry, 5, 5719-5725 (2017).
Wu, Z., F. Dong, Y. Liu, and H. Wang, Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V2O5, Catalysis Communications, 11, 82-86 (2009).
Xia, Y., H. Dai, L. Zhang, J. Deng, H. He, and C.T. Au, Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol, Applied Catalysis B: Environmental, 100, 229-237 (2010).
Yamamoto, T., J.S. Chang, A.A. Berezin, H. Kohno, S. Honda, and A. Shibuya, Decomposition of toluene, o-xylene, trichloroethylene, and their mixture using a BaTiO3 packed-bed plasma reactor. Journal of Advanced Oxidation Technologies, 1, 67 (1996).
Yamamoto, T., B.S. Rajanikanth, M. Okubo, T. Kuroki, and M. Nishino, Performance evaluation of non-thermal plasma reactors for NOx oxidation in diesel engine exhaust gas stream, IEEE Transactions on Industry Applications, 39, 1608 (2003).
Yuan, D.K., C. Ding, Y. He, Z.H. Wang, S. Kumar, Y.Q. Zhu, and K.F. Cen, Characteristics of dielectric barrier discharge ozone synthesis for different pulse modes, Plasma Chemistry and Plasma Processing, 37, 1165-1173 (2017).
Yuan, D.K., Z.H. Wang, C. Ding, Y. He, R. Whiddon, and K.F. Cen, Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure, Journal of Physics D: Applied Physics, 49, 203-455 (2016).
司洪濤、呂冠霖、黃香玫,氧化技術在高濃度COD廢水處理之應用,財團法人台灣產業服務基金會 (2008)。
童保舜,電漿驅動器臭氧生成之研究,國立中央大學環境工程研究所碩士論文,台灣 (2012)。
李灝銘、張木彬,電漿處理技術於環境工程之應用與發展趨勢 (2004)。
潘冠綸,Double perovskite-type觸媒結合非熱電漿去除揮發性有機污染物之可行性探討,國立中央大學環境工程研究所博士論文,台灣 (2017)。
王竣仟、吳逢彬、戴愷含、曾霈軒、黃建民,鍛燒溫度對二氧化鈦光電催化降解染料之影響,朝陽科技大學環境工程與管理系,台灣 (2011)。
熊家林、貢長生、張克立,無機精細化學品的製備和應用,化學工業出版社 (1999)。
申泮文、車雲霞,無機化學叢書,科學出版社 (1998)。
楊超棨,介電質常壓電漿產生器之開發及其質譜分析之應用,國立中山大學機械與機電工程研究所碩士論文 (2010)。
李昀恩,以LaFeO3/Black-TiO2行光催化反應以去除甲苯及異丙醇之可行性探討,國立中央大學碩士論文 (2018)。
指導教授 張木彬(Moo-Been Chang) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明