博碩士論文 107326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.147.61.218
姓名 方子翌(Tzu-Yi Fang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 銅污泥處理程序之戴奧辛類化合物與多環芳香烴排放特性探討
(Characteristics of Dioxin-like Compounds and Polycyclic Aromatic Hydrocarbons Emitted from Copper-containing Sludge Treatment Process)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究調查銅污泥處理廠之多氯聯苯戴奧辛及呋喃(Polychlorinated dibenzo-p-dioxins/furans, PCDD/Fs)、戴奧辛類多氯聯苯(dioxin-like Polychlorinated biphenyls, dl-PCBs)及多環芳香烴(Polycyclic Aromatic Hydrocarbons, PAHs)之排放濃度與物種分佈特性,藉由調整空氣污染防制設備(Air Pollution Control Devices, APCDs)操作參數,探討各物種間之去除效率。結果顯示煙囪排氣之PCDD/Fs毒性當量濃度為4.45 - 8.10 ng I-TEQ/Nm3,超過固定污染源之法規管制標準(0.5 ng I-TEQ/Nm3),dl-PCBs及PAHs量測結果分別為0.617 - 1.60 ng WHO2005-TEQ/Nm3及89.7 - 695 ng BaPeq/Nm3;飛灰及底渣之PCDD/Fs毒性當量濃度亦超過台灣有害事業廢棄物認定標準(1.0 ng-TEQ g-1),需妥善處理。排氣及灰份之PCDD/Fs物種毒性當量均以2,3,4,7,8PeDF及1,2,3,7,8,9HxDF為主要貢獻物種;而dl-PCBs物種毒性當量則以PeCB-126佔比最高;排氣之PAHs物種毒性當量分佈以BcFE及DBalP佔比最高,灰份之PAHs物種毒性當量分佈則以BcFE、5-MC、BaP及DBalP為主。此外,二燃室+驟冷塔對PCDD/Fs、dl-PCBs及PAHs之去除效率分別達97%、90%及70%;相對而言,熱交換器+袋式集塵器及洗滌塔對於PCDD/Fs及dl-PCBs有不減反增之趨勢,研究結果發現吸附於熱交換器沉積物之PCDD/Fs及dl-PCBs脫附至氣相導致袋式集塵器出口濃度升高,而洗滌塔因記憶效應導致煙囪排氣之PCDD/Fs及dl-PCBs濃度升高,應審慎考量其存在之必要性。
摘要(英) The characteristics of PCDD/Fs, dl-PCBs and PAHs emitted from a copper-containing sludge treatment plant are investigated in this study. The removal efficiencies of PCDD/Fs, dl-PCBs and PAHs achieved with APCDs are evaluated via simultaneous sampling at inlet and outlet of APCDs. The results indicate that the TEQ concentration of PCDD/Fs at stack is 4.45 - 8.10 ng I-TEQ/Nm3, which exceeds the Dioxin Emission Standards for Stationary Pollution Sources (0.5 ng I-TEQ/Nm3). The TEQ concentration of dl-PCBs and PAHs at stack are 0.617 - 1.60 ng WHO2005-TEQ/Nm3 and 89.7 - 695 ng BaPeq/Nm3, respectively. In addition, the PCDD/Fs TEQ concentrations of fly ash and bottom ash also exceed the Standards for Defining Hazardous Industrial Waste (1.0 ng-TEQ g-1), which should be properly treated. Moreover, in both stack and ash, 2,3,4,7,8PeDF and 1,2,3,7,8,9HxDF are the main TEQ contrubution, while PeCB-126 is the donminant congener of dl-PCBs. As for PAHs, BcFE and DBalP are the highest TEQ distribution in exhaust gas, while BcFE, 5-MC, BaP and DBalP are dominant in ash. In addition, the removal efficiencies of PCDD/Fs, dl-PCBs and PAHs achieved with SCC + QT reach 97%, 90% and 70%, respectively. However, the concentration of PCDD/Fs and dl-PCBs after heat exchanger+BH and WS increase. PCDD/Fs and dl-PCBs are desorbed to the gas phase in the heat exchanger, causing the increase of concentration after heat exchanger+BH. Besides, the concentration of PCDD/Fs and dl-PCBs increase across the WS is due to the memory effect. The necessity of its existence should be carefully considered.
關鍵字(中) ★ 戴奧辛及呋喃
★ 多氯聯苯
★ 多環芳香烴
★ 銅污泥處理廠
★ 毒性當量濃度
關鍵字(英) ★ Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs)
★ dioxin-like Polychlorinated biphenyls (dl-PCBs)
★ Polycyclic Aromatic Hydrocarbons (PAHs)
★ copper-containing sludge treatment plant
★ toxicity equivalent concentration (TEQ
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 X
第 一 章 前言 1
1-1 研究緣起 1
1-2 研究目的 1
第 二 章 文獻回顧 3
2-1 戴奧辛類化合物與多環芳香烴之特性 3
2-1-1 戴奧辛類化合物之特性 3
2-1-2 多環芳香烴之特性 4
2-2 熱處理過程中PCDD/FS及DL-PCBS的生成機制 6
2-2-1 均相(氣相)反應 6
2-2-2 異相(固相)反應 7
2-2-3 由前驅物形成之PCDD/Fs 7
2-2-4 由De Novo合成反應形成之PCDD/Fs 8
2-2-5 記憶效應 10
2-3 熱處理程序之戴奧辛類化合物排放 12
2-3-1 二次銅冶煉廠之PCDD/Fs及dl-PCBs排放 14
2-3-2 二次銅、鉛及鋅冶煉廠之PCDD/Fs排放 17
2-3-3 二次鋁冶煉廠之PCDD/Fs排放 18
2-3-4 二次鋁冶煉廠之PAHs排放 20
2-3-5 鎂冶煉廠之PCDD/Fs與dl-PCBs排放 22
2-3-6 鎂冶煉廠之PAHs排放 24
2-4 空氣污染防制設備(APCDS)之操作參數對污染物之影響 26
2-4-1 鍋爐燃燒區溫度對PCDD/Fs生成潛勢之影響 26
2-4-2 驟冷塔對PCDD/Fs生成之影響 27
2-4-3 二次燃燒室操作溫度對PCDD/Fs生成之影響 28
2-4-4 洗滌塔對PCDD/Fs生成之影響 29
2-4-5 活性碳噴注量對PCDD/Fs生成之影響 30
第 三 章 研究方法 32
3-1 研究流程及架構 32
3-2 採樣對象 33
3-3 樣品採樣程序 35
3-3-1 煙道氣中戴奧辛類化合物、多環芳香烴及氯化氫採樣程序 35
3-3-2 灰份樣品採樣程序 36
3-4 實驗材料、設備及試劑 37
3-4-1 實驗材料 37
3-4-2 實驗設備 38
3-4-3 實驗試劑 38
3-5 樣品前處理與分析方法 40
3-5-1 煙道氣戴奧辛類化合物樣品萃取程序 40
3-5-2 煙道氣多環芳香烴樣品萃取程序 42
3-5-3 底渣及飛灰樣品萃取程序 44
3-5-4 戴奧辛類化合物樣品淨化程序 44
3-5-5 多環芳香烴樣品淨化程序 45
3-5-6 高解析氣相層析/高解析質譜儀(HRGC/HRMS)分析 46
3-5-7 高解析氣相層析/低解析質譜儀(HRGC/LRMS)分析 48
3-6 其他檢測方法 51
3-6-1 煙道排氣之氣體組成分析 51
3-6-2 氯化氫 52
3-6-3 粒狀物 53
第 四 章 結果與討論 54
4-1 煙道氣採樣基本參數 54
4-2 戴奧辛(PCDD/FS)濃度 56
4-2-1 煙道排氣中戴奧辛濃度 56
4-2-2 煙道排氣中戴奧辛質量濃度之氣固比與PCDD/PCDF分佈 58
4-2-3 煙道排氣中戴奧辛物種質量濃度與毒性當量濃度分佈 60
4-2-4 灰份中戴奧辛濃度 69
4-2-5 灰份中戴奧辛質量濃度之PCDD/PCDF分佈 71
4-2-6 灰份中戴奧辛物種分佈 72
4-2-7 戴奧辛排放係數 82
4-3 多氯聯苯(DL-PCBS)濃度 83
4-3-1 煙道排氣之多氯聯苯濃度 83
4-3-2 煙道排氣中多氯聯苯質量濃度之氣固相分佈 85
4-3-3 煙道排氣中多氯聯苯物種質量與毒性當量濃度分佈 87
4-3-4 灰份中多氯聯苯濃度 95
4-3-5 灰份中多氯聯苯物種質量濃度與毒性當量濃度分佈 97
4-3-6 多氯聯苯排放係數 107
4-4 多環芳香烴(PAHS)濃度 109
4-4-1 煙道排氣中多環芳香烴濃度 109
4-4-2 煙道排氣中多環芳香烴質量濃度之氣固分佈及環數分佈比率 111
4-4-3 煙道排氣中多環芳香烴物種質量濃度與毒性當量濃度分佈 114
4-4-4 灰份中多環芳香烴濃度 122
4-4-5 灰份中多環芳香烴質量濃度之環數分佈比率 124
4-4-6 灰份中多環芳香烴物種質量濃度與毒性當量濃度分佈 124
4-4-7 多環芳香烴排放係數 135
4-5 戴奧辛類化合物與多環芳香烴之質量流佈 136
4-6 多環芳香烴與戴奧辛類化合物質量濃度之相關係數 138
4-7 金屬冶煉業之戴奧辛類化合物之毒性當量比較 139
第 五 章 結論與建議 142
5-1 結論 142
5-2 建議 143
參考文獻 144
附錄一 煙道氣樣品之戴奧辛類化合物及多環芳香烴質量濃度 154
附錄二 煙道氣樣品之戴奧辛類化合物及多環芳香烴毒性當量濃度 160
附錄三 灰份樣品之戴奧辛類化合物及多環芳香烴質量濃度 167
附錄四 灰份樣品之戴奧辛類化合物及多環芳香烴毒性當量濃度 173
附錄五 煙道氣樣品之戴奧辛類化合物及多環芳香烴回收率 179
附錄六 灰份樣品之戴奧辛類化合物及多環芳香烴回收率 183
參考文獻 Addink, R., Antonioli, M., Olie, K., & Govers, H. A. (1996). Reactions of dibenzofuran and 1, 2, 3, 4, 7, 8-hexachlorodibenzo-p-dioxin on municipal waste incinerator fly ash. Environmental Science & Technology, 30(3), 833-836.
Addink, R., Drijver, D. J., & Olie, K. (1991). Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in the carbon/fly ash system. Chemosphere, 23(8-10), 1205-1211.
Addink, R., & Olie, K. (1995). Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environmental Science & Technology, 29(6), 1425-1435.
Andersson, J. T., & Achten, C. (2015). Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycyclic Aromatic Compounds, 35(2-4), 330-354.
Aries, E., Anderson, D. R., Fisher, R., Fray, T. A., & Hemfrey, D. (2006). PCDD/F and “Dioxin-like” PCB emissions from iron ore sintering plants in the UK. Chemosphere, 65(9), 1470-1480.
Aurell, J., & Marklund, S. (2009). Effects of varying combustion conditions on PCDD/F emissions and formation during MSW incineration. Chemosphere, 75(5), 667-673.
Ba, T., Zheng, M. H., Zhang, B., Liu, W. B., Su, G. J., & Xiao, K. (2009a). Estimation and characterization of PCDD/Fs and dioxin-like PCB emission from secondary zinc and lead metallurgies in China. Journal of Environmental Monitoring, 11(4), 867-872.
Ba, T., Zheng, M. H., Zhang, B., Liu, W. B., Xiao, K., & Zhang, L. F. (2009b). Estimation and characterization of PCDD/Fs and dioxin-like PCBs from secondary copper and aluminum metallurgies in China. Chemosphere, 75(9), 1173-1178.
Ballschmiter, K., Braunmiller, I., Niemczyk, R., & Swerev, M. (1988). Reaction pathways for the formation of polychloro-dibenzodioxins (PCDD) and—dibenzofurans (PCDF) in combustion processes: II. Chlorobenzenes and chlorophenols as precursors in the formation of polychloro-dibenzodioxins and—dibenzofurans in flame chemistry. Chemosphere, 17(5), 995-1005.
Ballschmiter, K., Zoller, W., Buchert, H., & Class, T. (1985). Correlation between substitution pattern and reaction pathway in the formation of polychlorodibenzofurans. Fresenius′ Zeitschrift für Analytische Chemie, 322(6), 587-594.
Ballschmiter, K., Zoller, W., Scholz, C., & Nottrodt, A. (1983). Occurrence and absence of polychlorodibenzofurans and polychlorodibenzodioxins in fly ash from municipal incinerators. Chemosphere, 12(4-5), 585-594.
Bruce, K. R., Beach, L. O., & Gullett, B. K. (1991). The role of gas-phase Cl2 in the formation of PCDD/PCDF during waste combustion. Waste Management, 11(3), 97-102.
Buekens, A., & Huang, H. (1998). Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. Journal of Hazardous Materials, 62(1), 1-33.
CCME. (2010). Canadian soil quality guidelines for potentially carcinogenic and other PAHs: scientific criteria document. Winnipeg: CCME.
Chang, K. F., Fang, G. C., Chen, J. C., & Wu, Y. S. (2006). Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environmental Pollution, 142(3), 388-396.
Chang, M. B., & Lin, J. J. (2001). Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan. Chemosphere, 45(8), 1151-1157.
Chang, Y. M., Hung, C. Y., Chen, J. H., Chang, C. T., & Chen, C. H. (2009). Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. Journal of Hazardous Materials, 161(2-3), 1436-1443.
Chi, K. H., & Chang, M. B. (2005). Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases. Environmental Science & Technology, 39(20), 8023-8031.
Choi, K. I., Lee, D. H., Osako, M., & Kim, S. C. (2007). The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators. Chemosphere, 66(6), 1131-1137.
Choudhry, G. G., & Hutzinger, O. (1983). Mechanistic aspects of the thermal formation of halogenated organic compounds including polychlorinated dibenzo-p-dioxins (Vol. 4): CRC Press.
Chyang, C. S., Han, Y. L., Wu, L. W., Wan, H. P., Lee, H. T., & Chang, Y. H. (2010). An investigation on pollutant emissions from co-firing of RDF and coal. Waste Management, 30(7), 1334-1340.
Cunliffe, A. M., & Williams, P. T. (2007). Influence of temperature on PCDD/PCDF desorption from waste incineration flyash under nitrogen. Chemosphere, 66(6), 1146-1152.
Cunliffe, A. M., & Williams, P. T. (2009). De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases. Waste Management, 29(2), 739-748.
Dai, J. l., Li, S. J., Zhang, Y. L., Wang, R. Q., & Yu, Y. (2008). Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city, China. Environmental Monitoring and Assessment, 147(1-3), 317-326.
Dat, N. D., & Chang, M. B. (2017). Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment, 609, 682-693.
Everaert, K., & Baeyens, J. (2002). The formation and emission of dioxins in large scale thermal processes. Chemosphere, 46(3), 439-448.
Faengmark, I., Stroemberg, B., Berge, N., & Rappe, C. (1994). Influence of postcombustion temperature profiles on the formation of PCDDs, PCDFs, PCBzs, and PCBs in a pilot incinerator. Environmental Science & Technology, 28(4), 624-629.
Fullana, A., Nakka, H., & Sidhu, S. (2004). PCDF formation from PAH reactions. Organohalogen Compounds, 66, 1126-1131.
Gaus, C., Brunskill, G. J., Connell, D. W., Prange, J., Müller, J. F., Päpke, O., & Weber, R. (2002). Transformation processes, pathways, and possible sources of distinctive polychlorinated dibenzo-p-dioxin signatures in sink environments. Environmental Science & Technology, 36(16), 3542-3549.
Ghorishi, S. B., & Altwicker, E. R. (1995). Formation of polychlorinated dioxins, furans, benzenes, and phenols in the post-combustion region of a heterogeneous combustor: effect of bed material and post-combustion temperature. Environmental Science & Technology, 29(5), 1156-1162.
Gioia, R., Eckhardt, S., Breivik, K., Jaward, F. M., Prieto, A., Nizzetto, L., & Jones, K. C. (2011). Evidence for major emissions of PCBs in the West African region. Environmental Science & Technology, 45(4), 1349-1355.
Giugliano, M., Cernuschi, S., Grosso, M., Miglio, R., & Aloigi, E. (2002). PCDD/F mass balance in the flue gas cleaning units of a MSW incineration plant. Chemosphere, 46(9-10), 1321-1328.
Grochowalski, A., Lassen, C., Holtzer, M., Sadowski, M., & Hudyma, T. (2007). Determination of PCDDs, PCDFs, PCBs and HCB emissions from the metallurgical sector in Poland. Environmental Science and Pollution Research-International, 14(5), 326-332.
Gullett, B., Touati, A., Oudejans, L., Ryan, S., & Tabor, D. (2006). Transient PCDD and PCDF concentrations in an MWC. Organohalogen Compd, 68, 143-146.
Gullett, B. K., Bruce, K. R., & Beach, L. O. (1990). The effect of metal catalysts on the formation of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran precursors. Chemosphere, 20(10-12), 1945-1952.
Gullett, B. K., Bruce, K. R., Beach, L. O., & Drago, A. M. (1992). Mechanistic steps in the production of PCDD and PCDF during waste combustion. Chemosphere, 25(7-10), 1387-1392.
Gullett, B. K., Lemieux, P. M., & Dunn, J. E. (1994). Role of combustion and sorbent parameters in prevention of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran formation during waste combustion. Environmental Science & Technology, 28(1), 107-118.
Gullett, B. K., Raghunathan, K., & Dunn, J. E. (1998). The effect of cofiring high-sulfur coal with municipal waste on formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran. Environmental Engineering Science, 15(1), 59-70.
Gullett, B. K., Sarofim, A. F., Smith, K. A., & Procaccini, C. (2000). The role of chlorine in dioxin formation. Process Safety and Environmental Protection, 78(1), 47-52.
Gullett, B. K., Wyrzykowska-Ceradini, B., Tabor, D., & Touati, A. (2011). PBDDs/Fs and PCDDs/Fs in the raw and clean flue gas during steady state and transient operation of a municipal waste combustor. Environmental Science & Technology, 45(13), 5853-5860.
Guo, C. J., Wang, M. S., Lin, S. L., Mi, H. H., Wang, L. C., & Chang Chien, G. P. (2014). Emissions of PCDD/Fs and PCBs during the cold start-up of municipal solid waste incinerators. Aerosol and Air Quality Research, 14, 1593-1604.
Hajizadeh, Y., Onwudili, J. A., & Williams, P. T. (2011). PCDD/F formation from oxy-PAH precursors in waste incinerator flyash. Chemosphere, 85(11), 1672-1681.
Hatanaka, T., Imagawa, T., Kitajima, A., & Takeuchi, M. (2001). Effects of combustion temperature on PCDD/Fs formation in laboratory-scale fluidized-bed incineration. Environmental Science & Technology, 35(24), 4936-4940.
Heeb, N. V., Zennegg, M., Haag, R., Wichser, A., Schmid, P., Seiler, C., Ulrich, A., Honegger, P., Zeyer, K., & Emmenegger, L. (2013). PCDD/F formation in an iron/potassium-catalyzed diesel particle filter. Environmental Science & Technology, 47(12), 6510-6517.
Howsam, M., & Jones, K. C. (1998). Sources of PAHs in the environment. In PAHs and Related Compounds, 137-174.
Hu, J. C., Zheng, M. H., Nie, Z. Q., Liu, W. B., Liu, G. R., Zhang, B., & Xiao, K. (2013). Polychlorinated dibenzo-p-dioxin and dibenzofuran and polychlorinated biphenyl emissions from different smelting stages in secondary copper metallurgy. Chemosphere, 90(1), 89-94.
Huang, H., & Buekens, A. (1995). On the mechanisms of dioxin formation in combustion processes. Chemosphere, 31(9), 4099-4117.
Huang, H., & Buekens, A. (1996). De novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans Proposal of a mechanistic scheme. Science of the Total Environment, 193(2), 121-141.
Hung, P. C., Chang, C. C., Chang, S. H., & Chang, M. B. (2015). Characteristics of PCDD/F emissions from secondary copper smelting industry. Chemosphere, 118, 148-155.
Hunsinger, H., Kreisz, S., & Seifert, H. (1998). PCDD/F behavior in wet scrubbing systems of waste incineration plants. Chemosphere, 37(9-12), 2293-2297.
Iino, F., Imagawa, T., Takeuchi, M., & Sadakata, M. (1999a). De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environmental Science & Technology, 33(7), 1038-1043.
Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M., & Weber, R. (1999b). Formation rates of polychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol. Chemosphere, 39(15), 2749-2756.
Jay, K., & Stieglitz, L. (1991). On the mechanism of formation of polychlorinated aromatic compounds with copper (II) chloride. Chemosphere, 22(11), 987-996.
Kakuta, Y., Matsuto, T., Tojo, Y., & Tomikawa, H. (2007). Characterization of residual carbon influencing on de novo synthesis of PCDD/Fs in MSWI fly ash. Chemosphere, 68(5), 880-886.
Kawakami, I., Yamazaki, M., Matsuzawa, Y., Watanabe, I., & Tanaka, M. (1994). Memory effect in intermittent operation of MSW incinerators. Organohalogen Compounds, 20, 401.
Kim, B. H., Lee, S., Maken, S., Song, H. J., Park, J. W., & Min, B. (2007). Removal characteristics of PCDDs/Fs from municipal solid waste incinerator by dual bag filter (DBF) system. Fuel, 86(5-6), 813-819.
Kreisz, S., Hunsinger, H., & Vogg, H. (1997). Technical plastics as PCDD/F absorbers. Chemosphere, 34(5-7), 1045-1052.
Kulkarni, P. S., Crespo, J. G., & Afonso, C. A. (2008). Dioxins sources and current remediation technologies—a review. Environment International, 34(1), 139-153.
Kuzuhara, S., Sato, H., Kasai, E., & Nakamura, T. (2003). Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environmental Science & Technology, 37(11), 2431-2435.
Lerda, D. (2011). Polycyclic aromatic hydrocarbons (PAHs) factsheet. European Commission, Joint Research Center, Institute for reference materials and measurements.
Li, H. W., Lee, W. J., Huang, K. L., & Chang Chien, G. P. (2007). Effect of raw materials on emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from the stack flue gases of secondary aluminum smelters. Journal of Hazardous Materials, 147(3), 776-784.
Li, H. W., Wang, L. C., Chen, C. C., Yang, X. Y., Chang Chien, G. P., & Wu, E. M. Y. (2011). Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions. Journal of Hazardous Materials, 185(2-3), 1148-1155.
Lin, K. S., & Chang, N. B. (2008). Control strategy of PCDD/Fs in an industrial fluidized bed incinerator via activated carbon injection. Petroleum Science and Technology, 26(7-8), 764-789.
Liu, G. R., Jiang, X. X., Wang, M., Dong, S. J., & Zheng, M. H. (2015). Comparison of PCDD/F levels and profiles in fly ash samples from multiple industrial thermal sources. Chemosphere, 133, 68-74.
Liu, G. R., Zheng, M. H., Liu, W. B., Wang, C. Z., Zhang, B., Gao, L. R., Su, G. J., Xiao, K., & Lv, P. (2009). Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry. Environmental Science & Technology, 43(24), 9196-9201.
Löthgren, C. J., & van Bavel, B. (2005). Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility. Chemosphere, 61(3), 405-412.
Lu, C. M., Dat, N. D., Lien, C. K., Chi, K. H., & Chang, M. B. (2019). Characteristics of fine particulate matter and Polycyclic Aromatic Hydrocarbons emitted from coal combustion processes. Energy & Fuels, 33(10), 10247-10254.
Ma, Y. F., Lin, X. Q., Chen, Z. L., Chen, T., Zhan, M. X., Xu, S. X., Wu, H. L., Li, X. D., & Yan, J. H. (2019). Emission characteristics and formation pathways of polychlorinated dibenzo-p-dioxins and dibenzofurans from a typical pesticide plant. Aerosol and Air Quality Research, 19(6), 1390-1399.
Ma, Y. F., Lin, X. Q., Chen, Z. L., Li, X. D., Lu, S. Y., & Yan, J. H. (2020). Influence factors and mass balance of memory effect on PCDD/F emissions from the full-scale municipal solid waste incineration in China. Chemosphere, 239, 124614.
Manoli, E., & Samara, C. (1999). Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. TrAC Trends in Analytical Chemistry, 18(6), 417-428.
Marklund, S., Fängmark, I., & Rappe, C. (1992). Formation and degradation of chlorinated aromatic compounds in an air pollution control device for MSW combustor. Chemosphere, 25(1-2), 139-142.
Mastral, A. M., Callen, M., & Murillo, R. (1996). Assessment of PAH emissions as a function of coal combustion variables. Fuel, 75(13), 1533-1536.
Milligan, M. S., & Altwicker, E. R. (1993). The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans and low-temperature carbon gasification in fly ash. Environmental Science & Technology, 27(8), 1595-1601.
Milligan, M. S., & Altwicker, E. R. (1995). Mechanistic aspects of the de novo synthesis of polychlorinated dibenzo-p-dioxins and furans in fly ash from experiments using isotopically labeled reagents. Environmental Science & Technology, 29(5), 1353-1358.
Morisaki, H., Nakamura, S., Tang, N., Toriba, A., & Hayakawa, K. (2016). Benzo [c] fluorene in urban air: HPLC determination and mutagenic contribution relative to benzo [a] pyrene. Analytical Sciences, 32(2), 233-236.
Nganai, S., Lomnicki, S. M., & Dellinger, B. (2011). Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1, 2-dichlorobenzene. Environmental Science & Technology, 45(3), 1034-1040.
Nie, Z. Q., Liu, G. R., Liu, W. B., Zhang, B., & Zheng, M. H. (2012). Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China. Atmospheric Environment, 57, 109-115.
Nie, Z. Q., Yang, Y. F., Tang, Z. W., Liu, F., Wang, Q., & Huang, Q. F. (2014). Estimation and characterization of polycyclic aromatic hydrocarbons from magnesium metallurgy facilities in China. Environmental Science and Pollution Research, 21(22), 12629-12637.
Nie, Z. Q., Zheng, M. H., Liu, W. B., Zhang, B., Liu, G. R., Su, G. J., Lv, P., & Xiao, K. (2011). Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China. Chemosphere, 85(11), 1707-1712.
Nisbet, I. C., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300.
Paulik, L. B., Donald, C. E., Smith, B. W., Tidwell, L. G., Hobbie, K. A., Kincl, L., Haynes, E. N., & Anderson, K. A. (2016). Emissions of polycyclic aromatic hydrocarbons from natural gas extraction into air. Environmental Science & Technology, 50(14), 7921-7929.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Samburova, V., Zielinska, B., & Khlystov, A. (2017). Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics, 5(3), 17.
Shukla, S. K., Mangwani, N., Rao, T. S., & Das, S. (2014). Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In Microbial biodegradation and bioremediation, 203-232.
Sierhuis, W., De Vries, C., & Born, J. (1996). PCDD/F emissions related to the operating conditions of the flue gas cleaning system of MWI-Amsterdam. Chemosphere, 32(1), 159-168.
Stanmore, B. (2004). The formation of dioxins in combustion systems. Combustion and Flame, 136(3), 398-427.
Stieglitz, L., Vogg, H., Zwick, G., Beck, J., & Bautz, H. (1991). On formation conditions of organohalogen compounds from particulate carbon of fly ash. Chemosphere, 23(8-10), 1255-1264.
Takaoka, M., Liao, P., Takeda, N., Fujiwara, T., & Oshita, K. (2003). The behavior of PCDD/Fs, PCBs, chlorobenzenes and chlorophenols in wet scrubbing system of municipal solid waste incinerator. Chemosphere, 53(2), 153-161.
Taylor, P. H., Sidhu, S. S., Rubey, W. A., Dellinger, B., Wehrmeier, A., Lenoir, D., & Schramm, K. W. (1998). Evidence for a unified pathway of dioxin formation from aliphatic hydrocarbons. Paper presented at the Symposium (International) on Combustion.
Tsai, P.-J., Shieh, H.-Y., Lee, W.-J., & Lai, S.-O. (2002). Characterization of PAHs in the atmosphere of carbon black manufacturing workplaces. Journal of Hazardous Materials, 91(1-3), 25-42.
Tuppurainen, K., Halonen, I., Ruokojärvi, P., Tarhanen, J., & Ruuskanen, J. (1998). Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review. Chemosphere, 36(7), 1493-1511.
Vallejo, M., San Román, M. F., & Ortiz, I. (2013). Quantitative assessment of the formation of polychlorinated derivatives, PCDD/Fs, in the electrochemical oxidation of 2-chlorophenol as function of the electrolyte type. Environmental Science & Technology, 47(21), 12400-12408.
Vogg, H., Metzger, M., & Stieglitz, L. (1988). Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration. In Incineration of Municipal Waste (pp. 207-216).
Wang, T. J., Chen, T., Lin, B. B., Lin, X. Q., Zhan, M. X., & Li, X. D. (2017). Emission characteristics and relationships among PCDD/Fs, chlorobenzenes, chlorophenols and PAHs in the stack gas from two municipal solid waste incinerators in China. Rsc Advances, 7(70), 44309-44318.
Wang, Y. H., Lin, C., & Chang Chien, G. P. (2009a). Characteristics of PCDD/Fs in a particles filtration device with activated carbon injection. Aerosol and Air Quality Research, 9(3), 317-322.
Wang, Y. H., Lin, C., Lai, Y. C., & Chang Chien, G. P. (2009b). Characterization of PCDD/Fs, PAHs, and heavy metals in a secondary aluminum smelter. Journal of Environmental Science and Health, Part A, 44(13), 1335-1342.
Weber, R., Iino, F., Imagawa, T., Takeuchi, M., Sakurai, T., & Sadakata, M. (2001). Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere, 44(6), 1429-1438.
Weber, R., Sakurai, T., Ueno, S., & Nishino, J. (2002). Correlation of PCDD/PCDF and CO values in a MSW incinerator––indication of memory effects in the high temperature/cooling section. Chemosphere, 49(2), 127-134.
Wehrmeier, A., Lenoir, D., Sidhu, S. S., Taylor, P. H., Rubey, W. A., Kettrup, A., & Dellinger, B. (1998). Role of copper species in chlorination and condensation reactions of acetylene. Environmental Science & Technology, 32(18), 2741-2748.
Wikström, E., Ryan, S., Touati, A., Telfer, M., Tabor, D., & Gullett, B. K. (2003). Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology, 37(6), 1108-1113.
Wu, X. L., Zheng, M. H., Zhao, Y. Y., Yang, H. B., Yang, L. L., Jin, R., Xu, Y., Xiao, K., Liu, W. B., & Liu, G. R. (2018). Thermochemical formation of polychlorinated dibenzo-p-dioxins and dibenzofurans on the fly ash matrix from metal smelting sources. Chemosphere, 191, 825-831.
Yan, M., Li, X. D., Chen, T., Lu, S. Y., Yan, J. H., & Cen, K. F. (2010). Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs. Journal of Environmental Sciences, 22(10), 1637-1642.
Yang, F., Zhang, Q. Q., Guo, H. R., & Zhang, S. C. (2010). Evaluation of cytotoxicity, genotoxicity and teratogenicity of marine sediments from Qingdao coastal areas using in vitro fish cell assay, comet assay and zebrafish embryo test. Toxicology in Vitro, 24(7), 2003-2011.
Yang, H. H., Lee, W. J., Chen, S. J., & Lai, S. O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174.
Yang, Y. P., Wu, G. L., Jiang, C., Zheng, M. H., Yang, L. L., Xie, J. H., Wang, Q. J., Wang, M. X., Li, C., & Liu, G. R. (2020). Variations of PCDD/Fs emissions from secondary nonferrous smelting plants and towards to their source emission reduction. Environmental Pollution, 113946.
Zou, L. L., Ni, Y. W., Gao, Y., Tang, F. M., Jin, J., & Chen, J. P. (2018). Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China. Chemosphere, 195, 491-497.
張書豪、洪保鎮、張木彬,“含銅污泥資源化過程中戴奧辛物種分布特性檢測研究期末報告”,中央大學環境工程研究所,2008。
行政院環保署,公私場所固定污染源申報空氣污染防制費之粒狀污染物、鉛、鎘、汞、砷、六價鉻、戴奧辛排放係數、控制效率及其他計量規定,2018。
指導教授 張木彬(Moo-Been Chang) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明