摘要(英) |
The emissions from traffic vehicles are one of the major air pollution sources in the urban area. This work investigated the correlations of yearly concentrations of particulate matter, fine particulate matter, nitrogen oxides, sulfur dioxide, and carbon monoxide from the six air quality monitoring stations (referred to as AQS in the text) established by the Environmental Protection Administration and annual emissions of mobile vehicles from main artery roads surrounding the AQS in Taoyuan city. The emissions from mobile vehicles were calculated from the products of the traveled kilometers of the various types of vehicles in the radii of 2, 4, and 6 kilometers from the AQS and the emission factors from Taiwan Emission Data System. It aimed to understand the correlations between mobile vehicle emissions on the main artery roads surrounding the AQS and the air quality, and to assess the air quality impacts from the mobile sources.
The analysis of emission variation trends from five years after the base year in 2014 revealed that the growth of NOx was the highest at 13.14%, followed by PM2.5 at 7.00% in 2018. Small vehicles emitted the most substantial amount of pollutants (PM10, PM2.5, SOX, and CO) except for NOx contributed mostly from heavy-duty trucks. For the emissions from vehicles on the various artery roads, Taiwan Provincial Highway One contributed the highest, and Taiwan Provincial Highway Four was next to it.
The simple linear regression analysis applied to the annual emissions from main artery roads and yearly average concentrations of pollutants at the AQS disclosed the following results. The correlations were the best for NOx at the Dayuan and Pingzhen AQS, CO at the Taoyuan and Longtan AQS, and SOx both at the Zhongli traffic AQS and Guanyin background AQS. The correlations between the annual emissions from the vehicles on the main artery roads and yearly average concentrations of pollutants at the AQS varied with the distance to the AQS and traffic flows. However, the preceding correlations did not vary regularly with the distance to the AQS. This work is an exploratory study without considering emissions from stationary sources and vehicles on the expressways. |
參考文獻 |
[1] 行政院環境保護署,空氣品質監測網。
https://airtw.epa.gov.tw/CHT/Themes/LinkOpenData_History.aspx
[2] 行政院環保署空保處,全國空氣污染排放量清冊資訊系統。
https://teds.epa.gov.tw/Link.aspx
[3] 中華民國交通部公路總局,公路交通量調查統計表,2014~2018。
https://www.thb.gov.tw/sites/ch/modules/download/download_list?node=bcc520be-3e03-4e28-b4cb-7e338ed6d9bd&c=83baff80-2d7f-4a66-9285-d989f48effb
[4] 交通部公路總局,統計查詢網
https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100&funid=defjsp
[5] 經濟部能源局,能源統計,2014~2018
https://www.moeaboe.gov.tw/ECW/populace/home/Home.aspx
[6] 桃園市政府主計處,公務統計資訊系統,2014~2018
https://statbas.tycg.gov.tw/TCSTATRWD/Page/Default.aspx
[7] 台灣中油股份有限公司,產品特性與規範,2018。
https://www.cpc.com.tw/cl.aspx?n=37
[8] 交通部運輸研究所,車種定義
https://www.iot.gov.tw/np-62-1.html
[9] 邱瑞仙,桃園地區空氣污染物濃度相關性及地理分布,國立中央大學環境工程研究所碩士論文,2008
[10] 范振清,竹苗空品區2008~2012年空氣品質趨勢探討,國立中央大學環境工程研究所碩士論文,2014
[11] 陳正暐,中部空品區PM2.5排放污染源分析,國立中興大學環境工程學系在職專班碩士學位論文,2014
[12] 余昇翰,移動源排放一氧化氮對台中市臭氧模擬影響研究,國立中興大學環境工程系碩士學位論文,2015
[13] 顏廷先,大氣懸浮微粒監測站空間分佈與監測值特徵關係的研究,國立成功大學環境工學系碩士論文,2009
[14] 張智泳,台灣中南部地區空氣品質監測站代表性評估,國立中興大學環境工程學系碩士論文,2000
[15] 張君豪,以Mobile6.2模式推估台灣地區機車污染排放量的研究,國立中興大學環境工程學系碩士論文,2002
[16] 曾羿航,台灣都會地區機動車輛污染排放量推估分析,國立中興大學環境工程學系碩士論文,2004
[17] 施念青,公路運輸部門能源消費與SOX、NOX、CO2排放特性分析,國立成功大學環境工學系碩士論文,2002
[18] 楊文龍,交通管理策略隊都會空氣品質之影響評估,淡江大學水資源及環境工程學系博士論文,2001
[19] 林政剛、張木彬,環境工程概論,空氣品質管理,第七章,第218-220頁
[20] 陳順宇,迴歸分析,第四版,三民書局,2009
[21] 應立志,應用統計學,普林斯頓國際有限公司,2009
[22] Henry C. Perkins著、鄭福田、劉溪平、劉遵賢譯,空氣污染,高立圖書眼有限公司,2011
[23] 行政院環境保護署,中華民國107年度空氣污染防制總檢討,第84-92頁,2018
[24] U.S. EPA,“ AP-42: Compilation of Air Emissions Factors.”,
https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors
[25] Kemp, K. and Palmgren, F., “The Danish urban air quality monitoring program”, Science of the Total Environment,Volumes 189–190, pp.27-34, October 1996.
[26] Bespalov,V.I., Gurova, O.S. and Samarskaya, N.S., “Main Principles of the Atmospheric Air Ecological Monitoring Organization for Urban Environment Mobile Pollution Sources”,Procedia Engineering , Volume 150, pp.2019 – 2024, 2016.
[27] Rose, A. and Chen, C.Y., “Sources of change in energy use in the U.S. economy, 1972~1982”, Resources and Energy, Volume 13, lssue 1, pp.1-21,April 1991.
[28] Apte, J.S., Messier, K.P., Gani, S., Brauer, M., Kirchstetter, T.W., Lunden, M.M., Marshall, J.D., Portier, C.J., Vermeulen, R.C.H. and Hamburg, S.P., “High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data”, Environmental Science and Technology, Volume 51, pp.6999-7008, June 2017.
[29] Kam, Winnie., Liacos, James.W., Schauer, James.J., Delfino, Ralph.J. and Sioutas, Constantinos., “On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions”, Atmospheric Environment,Volume 61,pp. 378-386,December 2012.
[30] Lobscheid, Agnes.B., Nazaroff, William.W., Spears, Michael., Horvath, Arpad. and McKone, Thomas. E., “Intake fractions of primary conserved air pollutants emitted from on-road vehicles in the United States”, Atmospheric Environment,Volume 61,pp.298-305,December 2016.
[31] Lucian, Breuer.Janos., Can, Samsun.Remzi., Peters, Ralf. and Stolten, Detlef., “The impact of diesel vehicles on NOX and PM10 emissions from road transport in urban morphological zones: A case study in North Rhine-Westphalia, Germany”, Science of The Total Environment, Volume 727,pp.138583,July 2020.
[32] Bachman,William.H.,Sarasua,W.,Hallmark,S., Guensler,R., “Modeling regional mobile source emissions in a geographic information system framework”,TransportationResearchPartC,Volume8,pp.205-229,December 2000. |