博碩士論文 105382602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:3.15.168.20
姓名 胡飛(Fiaz Hussain)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 使用基於物理的模型分析區域地下水系統
(Characterization of a Regional Groundwater System using Physical Based Models)
相關論文
★ 水資源供需指標建立之研究★ 救旱措施對水資源供需之影響分析
★ 台灣地區颱風雨降雨型態之分析研究★ 滯洪池系統最佳化之研究
★ 運用遺傳演算優化串聯水庫系統聯合運轉規線之研究★ 河川魚類棲地分佈之推估與分析研究-以卑南溪新武呂河段為例-
★ 整合型區域水庫與攔河堰聯合運轉系統模擬解析及優化之研究★ 河川低水流量分流演算推估魚類棲地之研究-以烏溪上游為例
★ 大漢溪中游生態基流量推估與棲地改善之研究★ 石門水庫水質模擬與水理探討
★ 越域引水水庫聯合操作規線與打折供水最佳化之應用-以寶山與寶山第二水庫為例★ 防洪疏散門最佳啟閉時間之研究 -以基隆河臺北市河段為例-
★ 配水管網破管與供水穩定性關係之研究★ 石門水庫永續指標之建立與研究
★ 台灣地區重要水庫集水區永續指標建立與評量★ 限制開發行為對水庫集水區水質保護之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 區域尺度的地下水模擬是分析水資源永續發展的重要工具,因為它可以評估不同類型地下水的含水層行為。台灣南部地區因為獨特的狹長地形與夏雨冬乾的氣候,論其用水來源,地下水絕對是不可忽視的水資源。然而研究區域高雄地區長期因不斷抽取地下水,已造成不可逆的環境問題。為此,基於物理的耦合地表-地下水數值模擬和監控機制可以有效解決此問題,同時擬定取水策略,以防止過度抽水情形。WASH123D是耦合一維(河川)、二維(地表逕流)與三維(地下水)的物理水文模型,可用於分析與流量和水質有關的問題。在本研究中,選擇WASH123D作為模擬台灣西南部地區2-D地表水和3-D地下水相互作用的工具。其中,水力參數(水力傳導係數和曼寧粗糙係數)是預先估算並選擇的;流域尺度的水力傳導係數(K)是採用低流量退水法估算;而乾旱季節的退水流量則使用物理半分佈式連續水文模型(HEC-HMS)模擬。透過鑽井和DEM兩種數據,開發了組合方法來合理估算有效含水層深度(D),並且用於排除初始參數中的不確定性。採用所預估之流域尺度的K值於物理半分佈式水文模型進行模擬所得之數值與現場量測值相近,證明退水法分析是估算水文地質參數的有效方法。並且進一步用於建構露頭的形成和地質剖面的概念模型,以建立區域尺度的地下水模型.
WASH123D以2-D/3-D非穩態模擬進行校準和驗證,選擇2017和2018年的兩次降雨事件來分析地下水位變化,不考慮抽水數據。通過六個統計指標的性能評估,證明了地下水位對降雨與水文反應的合理性。總體而言,在校準和驗證過程中,模擬和觀察到的地下水位明顯對應,表示WASH123D是研究所選區域地表與地下水相互作用的合適工具。WASH123D使用了一組經過校準和驗證的參數以完成包括抽水量在內的區域地下水系統模擬,進而利用抽水和降雨數據進行模擬抽水對區域地下水位的影響,以呈現含水層的補注和抽水現象的動態變化。
藉由觀測井連續地下水位的數據圖形,並根據地下水水位局部擾動震幅大小來確定含水層的性質(受壓或非受壓) ,驗證含水層對補注和抽水現象的反應。波峰和波谷的形狀代表含水層對補注和抽水現象的反應,而觀測井中水位波動提供了有關區域地下水的資訊。本研究展示WASH123D模式可描述地下水層受外部降雨、補注、抽水的影響,應該是未來研究地下水管理相關工作的可靠方法。建議針對本研究區域,可使用經過校準和驗證的參數來進行WASH123D模式模擬區域地下水系統,包含乾旱季節長時間的抽水量,以有效規劃和管理地下水資源。
摘要(英) Regional-scale groundwater modeling is a key tool for the sustainable development of water resources as it allows the assessment of the aquifer behavior under different types of hydrological stresses. Groundwater is a salient water resource in southern Taiwan, especially in Kaohsiung where underground water resources have been subject to incessant over pumping, resulted in non-reversible environmental issues. Physics-based integrated surface-subsurface numerical modeling with monitoring mechanisms effectively resolve this problem and support the design of water drawing policies to prevent over-pumping in any situation. WASH123D is a first-principle, integrated multimedia, multi-process, physics-based hydrology model, designed to answer the environmental issues concerning both water quantity and quality. In this study, WASH123D was selected as an appropriate protocol for the simulation of 2-D surface and 3-D groundwater interactions in the regional area of Southwest Taiwan. The hydraulic conductivity and overland Manning’s roughness coefficient were two selected hydraulic parameters. Catchment-scale hydraulic conductivity (K) was prior estimated using low flow recession technique. The recession flows during dry seasons were simulated using physically based, semi-distributed, continuous hydrological modeling (HEC-HMS). A combined approach was developed to reasonably estimate the effective aquifer depth (D) by employing borehole lithology and DEM data, and this new approach was used to eliminate the subjectivity in the initial guess of parameter, a problem that has been frequently encountered in previous studies. The estimated catchment-scale K values demonstrated that flow recession analysis is an effective method for estimating hydrogeological parameter through physically based semi-distributed hydrological modeling of ungauged creek catchments. The reference K values were comparable with the results of a field test and further used in the construction of conceptual model based on outcrop formation and geological cross-sections for regional-scale groundwater modeling.
The calibration and validation of WASH123D were performed using 2-D/3-D transient simulation for the analysis of groundwater levels variations by selecting two-rainfall events in 2017 and 2018 without consideration of pumping data. The model performance evaluation through six statistical indicators to highest agreement indicated the reasonable hydrological response of groundwater levels to rainfall. Overall, the obvious corresponding of simulated and observed groundwater levels during calibration and validation indicated that WASH123D is an appropriate tool to investigate the surface-subsurface interaction in the selected study region. The set of calibrated and validated parameters were used to develop a full version of WASH123D including the pumping amount. This real-time simulation using pumping and rainfall data indicated the dynamics of recharge and discharge phenomena in the aquifer under pumping effects on regional groundwater levels.
The aquifer response to recharge-discharge phenomena was investigated based on the shape of continuous groundwater level data from observation wells. The nature of aquifer (confined or unconfined) were identified based on the apparent line thickness of groundwater hydrograph. The shape of crest and trough represents the aquifer response to recharge-discharge phenomena. The knowledge of water level fluctuations in the observation wells provides a piece of prior information about the abstraction of groundwater. From the results achieved in this study, it is fruitful to represent WASH123D modeling as a next tool that can best describe aquifer response to external stresses and should be a credible approach for future research work related to groundwater management. The set of calibrated and validated parameters of the study region are recommended to be used to develop a full version of WASH123D including the pumping amount for a long period during the dry season for better groundwater resource planning and management.
關鍵字(中) ★ 低流量退水
★ 水文地質參數
★ 校準
★ 驗證
★ WASH123D
★ 含水層反應
★ 抽水效應
關鍵字(英) ★ Low-flow recession
★ hydrogeological parameters
★ calibration
★ validation
★ WASH123D
★ aquifer response
★ pumping effects
論文目次 ABSTRACT……………………………………………………………………………... i
中文摘要………………………………………………………………………………… iii
Acknowledgments……………………………………………………………………….. v
Table of Contents………………………………………………………………………… vi
List of Figures……………………………………………………………………………. viii
List of Tables…………………………………………………………………………….. x
Chapter 1
Introduction……………………………………………………………………………… 1
1.1. Background………………………………………………………………………. 1
1.2. Problem statement and objectives……………………………………………….. 7
1.3. Format and outlines……………………………………………………………… 8
Chapter 2
Estimation of hydrogeological parameters using physically based hydrological modeling and lithology data in creek catchments of southern Taiwan…………………………………………………………………………………… 10
2.1. Introduction………………………………………………………………………. 10
2.2. Theory……………………………………………………………………………. 16
2.3. Description of the study area…………………………………………………….. 17
2.4. Material and Methods……………………………………………………………. 23
2.4.1. Flow simulation using physically based, semi-distributed, continuous hydrological model………………………………………………………………... 24
2.4.2. Data acquisition………………………………………………………….. 24
2.4.3. Setup of hydrological models……………………………………………. 27
2.4.4. Estimation of hydrological parameters…………………………………... 30
2.4.5. Model application at creek catchment…………………………………… 32
2.4.6. Estimating catchment-scale hydrogeological parameters using the low-flow recession method…………………………………………………………….. 33
2.5. Results and Discussion…………………………………………………………... 36
2.5.1. Simulating creek catchment runoff using the physical parameters………………………………………………………………………… 36
2.5.2. Hydrogeological parameter determinations……………………………… 38
2.6. Conclusions………………………………………………………………………. 44
Chapter 3
Regional-scale groundwater simulations using physics-based hydrology model: WASH123D………………………………………………………………………………. 46
3.1. Introduction………………………………………………………………………. 47
3.2. Study area description……………………………………………………………. 51
3.3. Methodology……………………………………………………………………... 54
3.3.1. Data acquisition and prior parameters estimation……………………….. 54
3.3.2. Regional hydrogeological analysis and conceptual model development... 55
3.3.3. Mesh generation………………………………………………………….. 58
3.3.4. Boundary conditions and input attributes of 2-D/3-D coverage…………. 60
3.3.5. Initial conditions and governing equations for 2-D/3-D transient simulation…………………………………………………………………………. 61
3.3.6. WASH123D model calibration and validation…………………………... 64
3.3.7. Model performance evaluation………………………………………....... 65
3.4. Results and Discussion…………………………………………………………... 66
3.4.1. Calibration results and performance evaluation…………………………. 66
3.4.2. Validation results and performance evaluation………………………….. 73
3.4.3. Simulation of real-time case scenario using WASH123D………………. 74
3.5. Conclusions………………………………………………………………………. 80
Chapter 4
Aquifer response to recharge–discharge phenomenon in regional area of Kaohsiung city Taiwan……………………………………………………………………………….. 82
4.1. Introduction………………………………………………………………………. 82
4.2. Study area description……………………………………………………………. 83
4.3. Methodology……………………………………………………………………... 85
4.4. Results……………………………………………………………………………. 86
4.4.1. Recharge phenomenon…………………………………………………… 87
4.4.2. Discharge phenomenon………………………………………………….. 89
4.4.3. Apparent line patterns of groundwater hydrograph and correlation analysis……………………………………………………………………………. 90
4.4.4. Effect of pumping and water level fluctuation…………………………... 94
4.5. Discussion………………………………………………………………………... 96
4.6. Conclusions………………………………………………………………………. 100
Chapter 5
Summary and Future work………………………………………………………………. 102
References………………………………………………………………………………. 105
Appendix-A………………………………………………………………………………. 116
Appendix-B………………………………………………………………………………. 117
Appendix-C………………………………………………………………………………. 122
Appendix-D………………………………………………………………………………. 127
Appendix-E………………………………………………………………………………. 131
參考文獻 Ali, M., Ye, S., Li, H.Y., Huang, M.Y., Leung, L.R., Fiori, A., and Sivapalan M. (2014). Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale. J. Hydrol., 519, 683-698.
Amanambu, A.C., Obarein, O.A., Mossa, J., Li, L., Ayeni, S.S., Balogun, O., Oyebamiji, A., Ochege, F.U. (2020). Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol., 589, 125163.
Arumí, J.L., Maureira, H., Souvignet, M., Pérez, C., Rivera, D., and Oyarzún, R. (2016). Where does the water go? Understanding geohydrological behaviour of Andean catchments in south-central Chile. Hydrol. Sci. J., 61, 844–855.
Barthel, R. and Banzhaf, S. (2016). Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resour Manage, 30, 1–32.
Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marssili-Libelli, S.; Newham, L.T.; Norton, J.P.; Perrin, C.; et al. (2013). Characterizing performance of environmental models. Environ. Model. Softw. 40, 1–20.
Beven, K. (1982). On subsurface stormflow: predictions with simple kinematic theory for saturated and unsaturated flows. Water Resour. Res., 18, 1627-1633.
Bogaart, P.W., van der Velde, Y., Lyon, S.W., and Dekker, S.C. (2016). Streamflow recession patterns can help unravel the role of climate and humans in landscape co-evolution. Hydrol. Earth Syst. Sc., 20(4), 1413-1432.
Boussinesq, J. (1904). Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. J. Math. Pures Appl., 5-78.
Brutsaert, W., and Lopez, J.P. (1998). Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour. Res., 34(2), 233-240.
Brutsaert, W., and Nieber, J.L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res., 13, 637–643.
Camporese, M., Paniconi, C., Putti, M. and Orlandini, S. (2010). Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data, Water Resour. Res., 46, W02512.
Chai, J.C., Shen, S.L., Zhu, H.H. and Zhang, X.L. (2004). Land subsidence due to groundwater drawdown in Shanghai. Géotechnique, 54, 143–148.
Chang, M., and Boyer, D.G. (1977). Estimates of Low Flows Using Watershed and Climatic Parameters. Water Resour. Res., 13(6), 997-1001.
Chea, S., and Oeurng, C. (2017). Flow simulation in an ungauged catchment of Tonle Sap Lake Basin in Cambodia: Application of the HEC-HMS model. Water Utility Journal, 17, 3-17.
Cheng, H.P., Lin, H.C., Edris, E.V., McVan, D., Tate, C.H. and Sanchez, J.E. et al. (2004c). Biscayne Bay coastal wetlands and C-111 spreader canal conceptual model technical memorandum (task 1). US Army Corps of Engineers Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi, 39180-6199.
Cheng, J.R.C., Lin, H.C., Cheng, H.W., Hunter, R.M., Richards, D.R. and Yeh, G.T. (2004a). Parallelization of the WASH123D code – phase I: 2-dimensional overland and 3-dimensional subsurface flow. In: Miller CT, Farthing MW, Gray WG, Pinder G, editors. Proc. XV International conference on computational methods in water resources. Chapel Hill (North Carolina), June 13–17, 1403–1413.
Cheng, H.P., Cheng, J.R., Richards, D.R., and Yeh, G.T. (2006). Numerical strategies to model surface and groundwater interactions for the Biscayne Bay coastal wetlands project alternatives. Proc., XVI Int. Conf. on Computational Methods in Water Resources (CDROM), P. Binning, P. Engesgaard, H. Dahle, W. G. Gray, and G. Pinder, eds., Copenhagen, Denmark.
Cheng, H.W., Lin, H.C., Yeh, G.T., Edris, E., and Granat, M. (2004b). Using WASH123D to design spreader canal for water management in watersheds. Proc., World Water Resources and Environment Conf. (CD-ROM), ASCE, Salt Lake City, Utah, United States.
Chu, X., and Steinman, A. (2009). Event and continuous hydrologic modeling with HEC-HMS. J. Irrig. Drain Eng., 135, 119-124.
Dimitriou, E., Moussoulis, E., Dı´az-Paniagua, C. and Serrano, L. (2017). Hydrodynamic numerical modelling of the water level decline in four temporary ponds of the Don˜ana National Park (SW Spain). J Arid Environ, 147, 90–102.
Faunt, C.C., Sneed, M., Traum, J. and Brandt, J.T. (2016). Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J., 24(3), 675-684.
Fedelman, A.D. (2000). Hydrologic Modeling System HEC-HMS: Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA.
Ferdowsian, R., Pannell, D.J., McCarron, C., Ryder, A.T. and Crossing, L. (2001). Explaining groundwater hydrographs: separating atypical rainfall events from time trends. Australian. J. Soil Res., 39(4):861-876.
Gailuma, A. and Vitola, I. (2009). Recession curve analysis approach for groundwater. www.puma.lu.lv/fileadmin
Ghazifard, A., Moslehi, A., Safaei, H. and Roostaei, M. (2016). Effects of groundwater withdrawal on land subsidence in Kashan Plain, Iran. Bull. Eng. Geol. Environ, 75(3): 1157-1168.
Graham, D.N. and Butts, M.B. (2005). Flexible, integrated watershed modelling with MIKE SHE, in Watershed Models, edited by V. Singh and D. Frevert, pp. 245–272, CRC Press, Boca Raton, Fla.
Gupta, H.V., Kling, H., Yilmaz, K.K. and Martinez, G.F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377(1-2), 80-91.
Gustard, A. and Demuth, S. (2008). Estimating, predicting and forecasting low flows. In: Manual on Low-Flow Estimation and Prediction, Operational Hydrology Report No.50, WMO-No. 1029. Koblenz, Germany.
Gustard, A., Bullock, A. and Dixon, J.M. (1992). Low flow estimation in United Kingdom. Institute of Hydrology, Report No. 108, Wallingford, United Kingdom.
He, Y., Bardossy, A., and Zehe, E. (2011). A review of regionalisation for continuous streamflow simulation. Hydrol. Earth syst. Sci., 15, 3539–3553.
Hsiao, L.-F., Yang, M.-J., Lee, C.-S., Kuo, H.-C., Shih, D.-S., Tsai, C.-C. et al. (2013). Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol., 506, 55-68.
Hsu, H.H., Chen, C.T., Lu, M.M., Chen, Y.M., Chou, C., and Wu, Y.C. (2011). Climate change in Taiwan: scientific report 2011, National Science and Technology Center for Disaster Reduction: New Taipei City, Taiwan. (In Chinese)
Hsu, T.-W., Shih, D.-S., Li, C.-Y., Lan, Y.-J., and Lin, Y.-C. (2017). A Study on Coastal Flooding and Risk Assessment under Climate Change in the Mid-Western Coast of Taiwan. Water, 9, 390.
Hsu, W.-C., Chang, H.-C., Chang, K.-T., Lin, E.-K., Liu, J.-K., Liou, Y.-A. (2015). Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin County, Taiwan. Remote Sens. 7, 8202-8223.
Huang, C.-C. and Yeh, H.-F. (2019). Hydrogeological parameter determination in the southern catchments of Taiwan by flow recession method. Water, 11, 7–23.
Ibrahim, A.B. and Cordery, I. (1995). Estimation of recharge and runoff volumes from ungauged catchments in eastern Australia. Hydrolog. Sci. J., 40(4), 499-515.
Ibrahim-Bathis, K. and Ahme, S.A. (2016). Rainfall-runoff modelling of Doddahalla watershed-an application of HEC-HMS and SCN-CN in ungauged agricultural watershed. Arab J Geosci. 9, 170-186.
Khan, H.F., Yang, Y.E., Ringler, C., Wi, S., Cheema, M.J.M. and Basharat, M. (2017). Guiding groundwater policy in the Indus Basin of Pakistan using a physically based groundwater model. J. Water Resour. Plan. Manag, 143, 05016014.
Kim, J., Warnock, A., Ivanov, V.Y. and Katopodes, N.D. (2012). Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow. Adv. Water Resour., 37, 104–126.
Kollet, S.J. and Maxwell, R. M. (2006). Integrated surface groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29(7), 945–958.
Kumar, M., Duffy, C.J. and Salvage, K.M. (2009). A Second-Order Accurate, Finite Volume–Based, Integrated Hydrologic Modeling (FIHM) Framework for Simulation of Surface and Subsurface Flow. Vadose Zone J. 8, 873–890.
Laaha, G., Demuth, S., Hisdal, H., Kroll, C.N., van Lanen, H.A.J., Nester, T., Rogger, M., Sauquet, E., Tallaksen, L.M., Woods, R.A. and Young, A. (2013). Prediction of low flows in ungauged basins. In: Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, ed. Günter Blöschl, Murugesu Sivapalan, Thorsten Wagener, Alberto Viglione and Hubert Savenije. Published by Cambridge University Press.
Lin, H.C., England, S., Cheng, H.P., Edris, E.V., Cheng, J.R. and Yeh, G.T. et al. (2006). Design of a Spreader swale system for restoration of the South Florida ecosystem. In: Binning P, Engesgaard P, Dahle H, Gray WG, Pinder G, editors. Proc XVI international conference on computational methods in water resources. CD. Copenhagen (Denmark), June 19–22.
Lin, H.C., Cheng, J.R., Cheng, H.P., Edris, E., Richards, D. and Yeh, G.T. (2004). Using the parallel WASH123D code to simulate overland-subsurface interactions. Proc., World Water Resources and Environment Conf. CD-ROM, ASCE, Salt Lake City.
Lorenzo-Lacruz, J., Garcia, C. and Morán-Tejeda, E. (2017). Groundwater level responses to precipitation variability in Mediterranean insular aquifers. J. Hydrol, 552, 516-531.
Malvicini, C.F., Steenhuis, T.S., Walter, M.T., Parlange, J.Y. and Walter, M.F. (2005). Evaluation of spring flow in the uplands of Malatom, Leyte, Philippines. Adv. Water Resour. 28(19), 1083-1090.
Markstrom, S.L., Niswonger, R.G., Regan, R.S., Prudic, D.E. and Barlow, P.M. (2008). GSFLOW-Coupled Groundwater and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). 2328-7055, Geological Survey (US).
Maxwell, R.M., Putti, M., Meyerhoff, S., Delfs, J.O., Ferguson, I.M., Ivanov, V., et al. (2014). Surface‐subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res., 50(2): 1531-1549.
Maxwell, R., Condon, L. and Kollet, S. (2015). A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev., 8(3).
Mendoza, G.F., Steenhuis, T.S., Walter, M.T. and Parlange, J.Y. (2003). Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. J. Hydrol., 279, 57–69.
Meresa, H. (2019). Modelling of river flow in ungauged catchment using remote sensing data: application of the empirical (SCS-CN), Artifcial Neural Network (ANN) and Hydrological Model (HEC-HMS). Model. Earth Syst. Environ., 5, 257–273.
Modoni, G., Darini, G., Spacagna, R. L., Saroli, M., Russo, G., and Croce, P. (2013). Spatial analysis of land subsidence induced by groundwater withdrawal. Eng. Geol., 167, 59-71.
Moriasi, D.N., Gitau, M.W., Pai, N. and Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE, 58, 1763–1785.
Mumtaz, R., Baig, S., Kazmi, S.S.A., Ahmad, F., Fatima, I. and Ghauri, B. (2018). Delineation of groundwater prospective resources by exploiting geospatial decision-making techniques for the Kingdom of Saudi Arabia. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3370-z
Narjary, B., Kumar, S., Kamra, S.K., Bundela, D.S. and Sharma, D.K. (2014). Impact of rainfall variability on groundwater resources and opportunities of artificial recharge structure to reduce its exploitation in fresh groundwater zones of Haryana. Curr Sci 107(8), 1305–1312.
Nishikawa, T., Siade, A.J., Reichard, E.G., Ponti, D.J., Canales, A.G. and Johnson, T.A. (2009). Stratigraphic controls on seawater intrusion and implications for groundwater management, Dominguez Gap area of Los Angeles, California, USA. Hydrogeol. J. 17, 1699–1725.
Ouédraogo, W.A.A., Raude, J.M. and Gathenya, J.M. (2018). Continuous Modeling of the Mkurumudzi River Catchment in Kenya Using the HEC-HMS Conceptual Model: Calibration, Validation, Model Performance Evaluation and Sensitivity Analysis. Hydrology, 5, 44.
Oyarzún, R., Godoy, R., Núñez, J., Fairley, J.P., Oyarzún, J., Maturana, H. and Freixas, G. (2014). Recession flow analysis as a suitable tool for hydrogeological parameter determination in steep, arid basins. J. Arid Environ.105, 1–11.
Panday, S. and Huyakorn, P. S. (2004). A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv. Water Resour. 27, 361– 382.
Paniconi, C., Marrocu, M., Putti, M. and Verbunt, M. (2003). Newtonian nudging for a Richards equation-based distributed hydrological model. Adv. Water Resour. 26, 161–178.
Parlange, J.Y., Stagnitti, F., Heilig, A., Szilagyi, J., Parlange, M.B., Steenhuis, T.S., Hogarth, W.L., Barry, D.A. and Li, L. (2001). Sudden drawdown and drainage of a horizontal aquifer. Water Resour. Res., 37, 2097–2101.
Posavec, K., Bacani, A. and Nakic, Z. (2006). A visual basic spreadsheet macro for recession curve analysis. Ground water, 44(5):764–767.
Prucha, B. et al. (2016). MIKE-SHE integrated groundwater and surface water model used to simulate scenario hydrology for input to DRIFT-ARID: the Mokolo River case study. Water SA, 42(3): 384-398.
Qu, Y. and Duffy, C. J. (2007). A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour. Res., 43,W08419.
Raj, P. (2004). Classification and interpretation of piezometer well hydrographs in parts of southeaster peninsular India. Environ Geol., 46, 808–819.
Rojstaczer, S. (1988). Determination of fluid flow properties of the response of water level in well to atmospheric loading. Water Resour Res, 24(11), 1927–1938.
Scharffenberg, W., Ely, P., Daly, S. Fleming, M. and Pak, J. (2010). Hydrologic modeling system (HEC-HMS): physically-based simulation components. 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1.
Sengupta, A., Adams, S.K., Bledsoe, B.P., Stein, E.D., McCune, K.S. and Mazor, R.D. (2018). Tools for managing hydrologic alteration on a regional scale: Estimating changes in flow characteristics at ungauged sites. Freshwater Biol., 63,769–785.
Shen, C. and Phanikumar, M. S. (2010). A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling. Adv. Water Resour., 33(12), 1524–1541.
Shen, C., Niu, J. and Phanikumar, M.S. (2013). Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface‐land surface processes model. Water Resour. Res., 49(5), 2552-2572.
Shih, D.S., Hsu, T.W., Chang, K.C. and Juan, H.L. (2012b). Implementing coastal inundation data with an integrated wind wave model and hydrological watershed simulations. Terr. Atmos. Ocean. Sci., 23, 513-525.
Shih, D.S., Chen, C.J., Li, M.H., Jang, C.S., Chang, C.M. and Liao, Y.Y. (2019). Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan. Water, 11(2), 360.
Shih, D.-S., Chen, C.-H. and Yeh, G.-T. (2014). Improving our understanding of flood forecasting using earlier hydro-meteorological intelligence. J. Hydrol, 512, 470–481.
Shih, D.-S., Liau, J.-M. and Yeh, G.T. (2012a). Model Assessments of Precipitation with a Unified Regional Circulation Rainfall and Hydrological Watershed Model. J. Hydrol. Eng., 17(1), 43–54.
Shih, D.-S. and Yeh, G.-T. (2011). Identified Model Parameterization, Calibration, and Validation of the Physically Distributed Hydrological Model WASH123D in Taiwan. J. Hydrol. Eng., 16(2), 126-136.
Sujono, J., Shikasho, S. and Hiramatsu, K. (2004). A comparison of techniques for hydrograph recession analysis. Hydrol Process, 18, 403–413.
Sun, P.L., Yang, C.C. and Lin, T.W. (2011). How to amend land subsidence treatment policies to solve coastal subsidence problems in Taiwan. Reg. Environ. Chang., 11, 679–691.
Szilagyi, J. and Parlange, M.B. (1998). Baseflow separation based on analytical solutions of the Boussinesq equation. J. Hydrol., 204(1-4), 251-260.
Taiwan Government Report. (2011). Hydrological Year Book of Taiwan, Water Resources Agency, Ministry of Economic Affairs. (In Chinese)
Taiwan Government Report. (2005). Taiwan Water Resources Agency 台灣水利署. Report on the Regulation planning of Mei-Long Creek 美濃溪治理規劃報告. 水利署水利規劃試驗所.
Tassew, B.G., Belete, M.A. and Miegel, K. (2019). Application of HEC-HMS Model for Flow Simulation in the Lake Tana Basin: The Case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. Hydrology, 6, 21.
Thakur, G.S. and Thomas, T. (2011). Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. J Geol Soc India, 77, 303–308.
Therrien, R., McLaren, R.G., Sudicky, E.A. and Panday, S.M. (2010). HydroGeoSphere: A Three-Dimensional Numerical Model Describing FullyIntegrated Subsurface and Surface Flow and Solute Transport, Groundwater Simul. Group, Waterloo, Ont., Canada.
Tosi, L., Strozzi, T., Da Lio, C. and Teatini, P. (2015). Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI. In: NISOLS 2015 (Ninth Symposium on Land Subsidence). Copernicus Publications.
Tran, D.-H. and Wang, S.-J. (2020). Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proc. IAHS, 382, 361–365.
USACE, (2004). Central and Southern Florida project comprehensive everglades restoration plan, project management plan, regional engineering model for ecosystem restoration. US Army Corps of Engineers, Jacksonville District; 2004.
USACE, (2013). Geospatial Hydrological Modeling Extension (HEC-GeoHMS) User Manual: Version 10.1, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA.
USACE, (2017). Hydrologic Modeling System (HEC-HMS) Application Guide: Version 4.3, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA.
USACE, (2018). Hydrologic Modeling System (HEC-HMS) User’s Manual: Version 4.3, Institute for Water Resources, Hydrologic Engineering Center (CEIWR-HEC), Davis, CA.
VanderKwaak, J. E. (1999). Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. Univ. of Waterloo, Waterloo, Ont., Canada.
VanderKwaak, J.E. and Loague, K. (2001). Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model, Water Resour. Res., 37, 999–1013.
Vannier, O., Braud, I. and Anquetin, S. (2014). Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models. Hydrol. Process. 28, 6276–6291.
Vassova, D. (2013). Comparison of rainfall-runoff models for design discharge assessment in a small ungauged catchment. Soil Water Res., 8, 26–33.
Vogel, R.M. and Kroll, C.N. (1992). Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resour. Res., 28(9), 2451-2458.
Wale, A., Rientjes, T., Gieske, A. and Getachew, H. (2009). Ungauged catchment contributions to Lake Tana’s water balance. Hydrol. Process, 23(26):3682–3693.
Warsta, L., Karvonen, T., Koivusalo, H., Paasonen-Kivekas, M. and Taskinen, A. (2013). Simulation of water balance in a clayey, subsurface drained agricultural field with three-dimensional FLUSH model. J. Hydrol., 476, 395–409.
Weeks, E.P. (1979). Barometric fluctuations in wells tapping deep unconfined aquifers. Water Resour Res, 15(5), 1167–1176.
Wu, R.-S. and Shih, D.-S. (2018). Modeling hydrological impacts of groundwater level in the context of climate and land cover change. Terr. Atmos. Ocean. Sci. 29, 341-353.
Yang, H., Choi, H.T. and Lim, H. (2018). Applicability Assessment of Estimation Methods for Baseflow Recession Constants in Small Forest Catchments. Water, 10, 1074.
Yeh, G.T., Huang, G.B., Zhang, F., Cheng, H.P. and Lin, H.C. (2005). WASH123D: A numerical model of flow, thermal transport, and salinity, sediment, and water quality transport in WAterSHed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media. Technical report, US EPA. Department of Civil and Environmental Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL.
Yeh, G.T., Husng, G., Cheng, H.P., Zhang, F., Lin, H.C., Edris, E. and Richards, D. (2006). A first principle, physics based watershed model: WASH123D. In: Singh VP, Frevert DK editors. Chapter 9 in watershed models, CRC Press LLC, 6000 Broken Sound Parkway, NW, (Suite 300) Boca Raton, FL, USA. p. 211–244.
Yeh, G.T., Cheng, H.P., Cheng, J.R. and Lin, J.H. (1998). A numerical model to simulate water flow and contaminant and sediment transport in watershed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media (WASH123D: version 1.0). Technical report CHL-98-19. Waterways experiment station, US Army Corps of Engineers, Vicksburg, MS.
Yeh, G.T., Sharp-Hansen, S., Lester, B., Strobl, R. and Scarbrough, J. (1992). 3DFEMWATER/3DLEWASTE: Numerical codes for delineating wellhead protection areas in agricultural regions based on the assimilative capacity criterion, Rep. EPA/600/R/R-92/223, U.S. Environ. Prot. Agency, Washington, D. C.
Yeh, G.-T., Shih, D.-S. and Cheng, J.-R.C. (2011). An integrated media, integrated processes watershed model. Computers & Fluids, 45 (2011) 2–13.
Young, A., Hughes, D. and Demuth, S. (2008). Estimating low flows at ungauged sites. In: Manual on Low-Flow Estimation and Prediction, Operational Hydrology Report No.50, WMO-No. 1029. Koblenz, Germany.
Zhang, L., Chen, Y.Q.D., Hickel, K. and Shao, Q.X. (2009). Analysis of low-flow characteristics for catchments in Dongjiang Basin, China. Hydrogeol. J., 17(3), 631-640.
Zhu, L., Gong, H., Li, X., Wang, R., Chen, B., Dai, Z. and Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol., 193, 243-255.
指導教授 吳瑞賢(Ray-Shyan Wu) 審核日期 2020-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明