參考文獻 |
Ali, M., Ye, S., Li, H.Y., Huang, M.Y., Leung, L.R., Fiori, A., and Sivapalan M. (2014). Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale. J. Hydrol., 519, 683-698.
Amanambu, A.C., Obarein, O.A., Mossa, J., Li, L., Ayeni, S.S., Balogun, O., Oyebamiji, A., Ochege, F.U. (2020). Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol., 589, 125163.
Arumí, J.L., Maureira, H., Souvignet, M., Pérez, C., Rivera, D., and Oyarzún, R. (2016). Where does the water go? Understanding geohydrological behaviour of Andean catchments in south-central Chile. Hydrol. Sci. J., 61, 844–855.
Barthel, R. and Banzhaf, S. (2016). Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models. Water Resour Manage, 30, 1–32.
Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marssili-Libelli, S.; Newham, L.T.; Norton, J.P.; Perrin, C.; et al. (2013). Characterizing performance of environmental models. Environ. Model. Softw. 40, 1–20.
Beven, K. (1982). On subsurface stormflow: predictions with simple kinematic theory for saturated and unsaturated flows. Water Resour. Res., 18, 1627-1633.
Bogaart, P.W., van der Velde, Y., Lyon, S.W., and Dekker, S.C. (2016). Streamflow recession patterns can help unravel the role of climate and humans in landscape co-evolution. Hydrol. Earth Syst. Sc., 20(4), 1413-1432.
Boussinesq, J. (1904). Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. J. Math. Pures Appl., 5-78.
Brutsaert, W., and Lopez, J.P. (1998). Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour. Res., 34(2), 233-240.
Brutsaert, W., and Nieber, J.L. (1977). Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res., 13, 637–643.
Camporese, M., Paniconi, C., Putti, M. and Orlandini, S. (2010). Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data, Water Resour. Res., 46, W02512.
Chai, J.C., Shen, S.L., Zhu, H.H. and Zhang, X.L. (2004). Land subsidence due to groundwater drawdown in Shanghai. Géotechnique, 54, 143–148.
Chang, M., and Boyer, D.G. (1977). Estimates of Low Flows Using Watershed and Climatic Parameters. Water Resour. Res., 13(6), 997-1001.
Chea, S., and Oeurng, C. (2017). Flow simulation in an ungauged catchment of Tonle Sap Lake Basin in Cambodia: Application of the HEC-HMS model. Water Utility Journal, 17, 3-17.
Cheng, H.P., Lin, H.C., Edris, E.V., McVan, D., Tate, C.H. and Sanchez, J.E. et al. (2004c). Biscayne Bay coastal wetlands and C-111 spreader canal conceptual model technical memorandum (task 1). US Army Corps of Engineers Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi, 39180-6199.
Cheng, J.R.C., Lin, H.C., Cheng, H.W., Hunter, R.M., Richards, D.R. and Yeh, G.T. (2004a). Parallelization of the WASH123D code – phase I: 2-dimensional overland and 3-dimensional subsurface flow. In: Miller CT, Farthing MW, Gray WG, Pinder G, editors. Proc. XV International conference on computational methods in water resources. Chapel Hill (North Carolina), June 13–17, 1403–1413.
Cheng, H.P., Cheng, J.R., Richards, D.R., and Yeh, G.T. (2006). Numerical strategies to model surface and groundwater interactions for the Biscayne Bay coastal wetlands project alternatives. Proc., XVI Int. Conf. on Computational Methods in Water Resources (CDROM), P. Binning, P. Engesgaard, H. Dahle, W. G. Gray, and G. Pinder, eds., Copenhagen, Denmark.
Cheng, H.W., Lin, H.C., Yeh, G.T., Edris, E., and Granat, M. (2004b). Using WASH123D to design spreader canal for water management in watersheds. Proc., World Water Resources and Environment Conf. (CD-ROM), ASCE, Salt Lake City, Utah, United States.
Chu, X., and Steinman, A. (2009). Event and continuous hydrologic modeling with HEC-HMS. J. Irrig. Drain Eng., 135, 119-124.
Dimitriou, E., Moussoulis, E., Dı´az-Paniagua, C. and Serrano, L. (2017). Hydrodynamic numerical modelling of the water level decline in four temporary ponds of the Don˜ana National Park (SW Spain). J Arid Environ, 147, 90–102.
Faunt, C.C., Sneed, M., Traum, J. and Brandt, J.T. (2016). Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J., 24(3), 675-684.
Fedelman, A.D. (2000). Hydrologic Modeling System HEC-HMS: Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA.
Ferdowsian, R., Pannell, D.J., McCarron, C., Ryder, A.T. and Crossing, L. (2001). Explaining groundwater hydrographs: separating atypical rainfall events from time trends. Australian. J. Soil Res., 39(4):861-876.
Gailuma, A. and Vitola, I. (2009). Recession curve analysis approach for groundwater. www.puma.lu.lv/fileadmin
Ghazifard, A., Moslehi, A., Safaei, H. and Roostaei, M. (2016). Effects of groundwater withdrawal on land subsidence in Kashan Plain, Iran. Bull. Eng. Geol. Environ, 75(3): 1157-1168.
Graham, D.N. and Butts, M.B. (2005). Flexible, integrated watershed modelling with MIKE SHE, in Watershed Models, edited by V. Singh and D. Frevert, pp. 245–272, CRC Press, Boca Raton, Fla.
Gupta, H.V., Kling, H., Yilmaz, K.K. and Martinez, G.F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol., 377(1-2), 80-91.
Gustard, A. and Demuth, S. (2008). Estimating, predicting and forecasting low flows. In: Manual on Low-Flow Estimation and Prediction, Operational Hydrology Report No.50, WMO-No. 1029. Koblenz, Germany.
Gustard, A., Bullock, A. and Dixon, J.M. (1992). Low flow estimation in United Kingdom. Institute of Hydrology, Report No. 108, Wallingford, United Kingdom.
He, Y., Bardossy, A., and Zehe, E. (2011). A review of regionalisation for continuous streamflow simulation. Hydrol. Earth syst. Sci., 15, 3539–3553.
Hsiao, L.-F., Yang, M.-J., Lee, C.-S., Kuo, H.-C., Shih, D.-S., Tsai, C.-C. et al. (2013). Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol., 506, 55-68.
Hsu, H.H., Chen, C.T., Lu, M.M., Chen, Y.M., Chou, C., and Wu, Y.C. (2011). Climate change in Taiwan: scientific report 2011, National Science and Technology Center for Disaster Reduction: New Taipei City, Taiwan. (In Chinese)
Hsu, T.-W., Shih, D.-S., Li, C.-Y., Lan, Y.-J., and Lin, Y.-C. (2017). A Study on Coastal Flooding and Risk Assessment under Climate Change in the Mid-Western Coast of Taiwan. Water, 9, 390.
Hsu, W.-C., Chang, H.-C., Chang, K.-T., Lin, E.-K., Liu, J.-K., Liou, Y.-A. (2015). Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin County, Taiwan. Remote Sens. 7, 8202-8223.
Huang, C.-C. and Yeh, H.-F. (2019). Hydrogeological parameter determination in the southern catchments of Taiwan by flow recession method. Water, 11, 7–23.
Ibrahim, A.B. and Cordery, I. (1995). Estimation of recharge and runoff volumes from ungauged catchments in eastern Australia. Hydrolog. Sci. J., 40(4), 499-515.
Ibrahim-Bathis, K. and Ahme, S.A. (2016). Rainfall-runoff modelling of Doddahalla watershed-an application of HEC-HMS and SCN-CN in ungauged agricultural watershed. Arab J Geosci. 9, 170-186.
Khan, H.F., Yang, Y.E., Ringler, C., Wi, S., Cheema, M.J.M. and Basharat, M. (2017). Guiding groundwater policy in the Indus Basin of Pakistan using a physically based groundwater model. J. Water Resour. Plan. Manag, 143, 05016014.
Kim, J., Warnock, A., Ivanov, V.Y. and Katopodes, N.D. (2012). Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow. Adv. Water Resour., 37, 104–126.
Kollet, S.J. and Maxwell, R. M. (2006). Integrated surface groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour., 29(7), 945–958.
Kumar, M., Duffy, C.J. and Salvage, K.M. (2009). A Second-Order Accurate, Finite Volume–Based, Integrated Hydrologic Modeling (FIHM) Framework for Simulation of Surface and Subsurface Flow. Vadose Zone J. 8, 873–890.
Laaha, G., Demuth, S., Hisdal, H., Kroll, C.N., van Lanen, H.A.J., Nester, T., Rogger, M., Sauquet, E., Tallaksen, L.M., Woods, R.A. and Young, A. (2013). Prediction of low flows in ungauged basins. In: Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, ed. Günter Blöschl, Murugesu Sivapalan, Thorsten Wagener, Alberto Viglione and Hubert Savenije. Published by Cambridge University Press.
Lin, H.C., England, S., Cheng, H.P., Edris, E.V., Cheng, J.R. and Yeh, G.T. et al. (2006). Design of a Spreader swale system for restoration of the South Florida ecosystem. In: Binning P, Engesgaard P, Dahle H, Gray WG, Pinder G, editors. Proc XVI international conference on computational methods in water resources. CD. Copenhagen (Denmark), June 19–22.
Lin, H.C., Cheng, J.R., Cheng, H.P., Edris, E., Richards, D. and Yeh, G.T. (2004). Using the parallel WASH123D code to simulate overland-subsurface interactions. Proc., World Water Resources and Environment Conf. CD-ROM, ASCE, Salt Lake City.
Lorenzo-Lacruz, J., Garcia, C. and Morán-Tejeda, E. (2017). Groundwater level responses to precipitation variability in Mediterranean insular aquifers. J. Hydrol, 552, 516-531.
Malvicini, C.F., Steenhuis, T.S., Walter, M.T., Parlange, J.Y. and Walter, M.F. (2005). Evaluation of spring flow in the uplands of Malatom, Leyte, Philippines. Adv. Water Resour. 28(19), 1083-1090.
Markstrom, S.L., Niswonger, R.G., Regan, R.S., Prudic, D.E. and Barlow, P.M. (2008). GSFLOW-Coupled Groundwater and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). 2328-7055, Geological Survey (US).
Maxwell, R.M., Putti, M., Meyerhoff, S., Delfs, J.O., Ferguson, I.M., Ivanov, V., et al. (2014). Surface‐subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res., 50(2): 1531-1549.
Maxwell, R., Condon, L. and Kollet, S. (2015). A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geosci. Model Dev., 8(3).
Mendoza, G.F., Steenhuis, T.S., Walter, M.T. and Parlange, J.Y. (2003). Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis. J. Hydrol., 279, 57–69.
Meresa, H. (2019). Modelling of river flow in ungauged catchment using remote sensing data: application of the empirical (SCS-CN), Artifcial Neural Network (ANN) and Hydrological Model (HEC-HMS). Model. Earth Syst. Environ., 5, 257–273.
Modoni, G., Darini, G., Spacagna, R. L., Saroli, M., Russo, G., and Croce, P. (2013). Spatial analysis of land subsidence induced by groundwater withdrawal. Eng. Geol., 167, 59-71.
Moriasi, D.N., Gitau, M.W., Pai, N. and Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE, 58, 1763–1785.
Mumtaz, R., Baig, S., Kazmi, S.S.A., Ahmad, F., Fatima, I. and Ghauri, B. (2018). Delineation of groundwater prospective resources by exploiting geospatial decision-making techniques for the Kingdom of Saudi Arabia. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3370-z
Narjary, B., Kumar, S., Kamra, S.K., Bundela, D.S. and Sharma, D.K. (2014). Impact of rainfall variability on groundwater resources and opportunities of artificial recharge structure to reduce its exploitation in fresh groundwater zones of Haryana. Curr Sci 107(8), 1305–1312.
Nishikawa, T., Siade, A.J., Reichard, E.G., Ponti, D.J., Canales, A.G. and Johnson, T.A. (2009). Stratigraphic controls on seawater intrusion and implications for groundwater management, Dominguez Gap area of Los Angeles, California, USA. Hydrogeol. J. 17, 1699–1725.
Ouédraogo, W.A.A., Raude, J.M. and Gathenya, J.M. (2018). Continuous Modeling of the Mkurumudzi River Catchment in Kenya Using the HEC-HMS Conceptual Model: Calibration, Validation, Model Performance Evaluation and Sensitivity Analysis. Hydrology, 5, 44.
Oyarzún, R., Godoy, R., Núñez, J., Fairley, J.P., Oyarzún, J., Maturana, H. and Freixas, G. (2014). Recession flow analysis as a suitable tool for hydrogeological parameter determination in steep, arid basins. J. Arid Environ.105, 1–11.
Panday, S. and Huyakorn, P. S. (2004). A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv. Water Resour. 27, 361– 382.
Paniconi, C., Marrocu, M., Putti, M. and Verbunt, M. (2003). Newtonian nudging for a Richards equation-based distributed hydrological model. Adv. Water Resour. 26, 161–178.
Parlange, J.Y., Stagnitti, F., Heilig, A., Szilagyi, J., Parlange, M.B., Steenhuis, T.S., Hogarth, W.L., Barry, D.A. and Li, L. (2001). Sudden drawdown and drainage of a horizontal aquifer. Water Resour. Res., 37, 2097–2101.
Posavec, K., Bacani, A. and Nakic, Z. (2006). A visual basic spreadsheet macro for recession curve analysis. Ground water, 44(5):764–767.
Prucha, B. et al. (2016). MIKE-SHE integrated groundwater and surface water model used to simulate scenario hydrology for input to DRIFT-ARID: the Mokolo River case study. Water SA, 42(3): 384-398.
Qu, Y. and Duffy, C. J. (2007). A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour. Res., 43,W08419.
Raj, P. (2004). Classification and interpretation of piezometer well hydrographs in parts of southeaster peninsular India. Environ Geol., 46, 808–819.
Rojstaczer, S. (1988). Determination of fluid flow properties of the response of water level in well to atmospheric loading. Water Resour Res, 24(11), 1927–1938.
Scharffenberg, W., Ely, P., Daly, S. Fleming, M. and Pak, J. (2010). Hydrologic modeling system (HEC-HMS): physically-based simulation components. 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1.
Sengupta, A., Adams, S.K., Bledsoe, B.P., Stein, E.D., McCune, K.S. and Mazor, R.D. (2018). Tools for managing hydrologic alteration on a regional scale: Estimating changes in flow characteristics at ungauged sites. Freshwater Biol., 63,769–785.
Shen, C. and Phanikumar, M. S. (2010). A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling. Adv. Water Resour., 33(12), 1524–1541.
Shen, C., Niu, J. and Phanikumar, M.S. (2013). Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface‐land surface processes model. Water Resour. Res., 49(5), 2552-2572.
Shih, D.S., Hsu, T.W., Chang, K.C. and Juan, H.L. (2012b). Implementing coastal inundation data with an integrated wind wave model and hydrological watershed simulations. Terr. Atmos. Ocean. Sci., 23, 513-525.
Shih, D.S., Chen, C.J., Li, M.H., Jang, C.S., Chang, C.M. and Liao, Y.Y. (2019). Statistical and Numerical Assessments of Groundwater Resource Subject to Excessive Pumping: Case Study in Southwest Taiwan. Water, 11(2), 360.
Shih, D.-S., Chen, C.-H. and Yeh, G.-T. (2014). Improving our understanding of flood forecasting using earlier hydro-meteorological intelligence. J. Hydrol, 512, 470–481.
Shih, D.-S., Liau, J.-M. and Yeh, G.T. (2012a). Model Assessments of Precipitation with a Unified Regional Circulation Rainfall and Hydrological Watershed Model. J. Hydrol. Eng., 17(1), 43–54.
Shih, D.-S. and Yeh, G.-T. (2011). Identified Model Parameterization, Calibration, and Validation of the Physically Distributed Hydrological Model WASH123D in Taiwan. J. Hydrol. Eng., 16(2), 126-136.
Sujono, J., Shikasho, S. and Hiramatsu, K. (2004). A comparison of techniques for hydrograph recession analysis. Hydrol Process, 18, 403–413.
Sun, P.L., Yang, C.C. and Lin, T.W. (2011). How to amend land subsidence treatment policies to solve coastal subsidence problems in Taiwan. Reg. Environ. Chang., 11, 679–691.
Szilagyi, J. and Parlange, M.B. (1998). Baseflow separation based on analytical solutions of the Boussinesq equation. J. Hydrol., 204(1-4), 251-260.
Taiwan Government Report. (2011). Hydrological Year Book of Taiwan, Water Resources Agency, Ministry of Economic Affairs. (In Chinese)
Taiwan Government Report. (2005). Taiwan Water Resources Agency 台灣水利署. Report on the Regulation planning of Mei-Long Creek 美濃溪治理規劃報告. 水利署水利規劃試驗所.
Tassew, B.G., Belete, M.A. and Miegel, K. (2019). Application of HEC-HMS Model for Flow Simulation in the Lake Tana Basin: The Case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. Hydrology, 6, 21.
Thakur, G.S. and Thomas, T. (2011). Analysis of groundwater levels for detection of trend in Sagar district, Madhya Pradesh. J Geol Soc India, 77, 303–308.
Therrien, R., McLaren, R.G., Sudicky, E.A. and Panday, S.M. (2010). HydroGeoSphere: A Three-Dimensional Numerical Model Describing FullyIntegrated Subsurface and Surface Flow and Solute Transport, Groundwater Simul. Group, Waterloo, Ont., Canada.
Tosi, L., Strozzi, T., Da Lio, C. and Teatini, P. (2015). Regional and local land subsidence at the Venice coastland by TerraSAR-X PSI. In: NISOLS 2015 (Ninth Symposium on Land Subsidence). Copernicus Publications.
Tran, D.-H. and Wang, S.-J. (2020). Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proc. IAHS, 382, 361–365.
USACE, (2004). Central and Southern Florida project comprehensive everglades restoration plan, project management plan, regional engineering model for ecosystem restoration. US Army Corps of Engineers, Jacksonville District; 2004.
USACE, (2013). Geospatial Hydrological Modeling Extension (HEC-GeoHMS) User Manual: Version 10.1, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA.
USACE, (2017). Hydrologic Modeling System (HEC-HMS) Application Guide: Version 4.3, Institute for Water Resources, Hydrologic Engineering Center, Davis, CA.
USACE, (2018). Hydrologic Modeling System (HEC-HMS) User’s Manual: Version 4.3, Institute for Water Resources, Hydrologic Engineering Center (CEIWR-HEC), Davis, CA.
VanderKwaak, J. E. (1999). Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. Univ. of Waterloo, Waterloo, Ont., Canada.
VanderKwaak, J.E. and Loague, K. (2001). Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model, Water Resour. Res., 37, 999–1013.
Vannier, O., Braud, I. and Anquetin, S. (2014). Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models. Hydrol. Process. 28, 6276–6291.
Vassova, D. (2013). Comparison of rainfall-runoff models for design discharge assessment in a small ungauged catchment. Soil Water Res., 8, 26–33.
Vogel, R.M. and Kroll, C.N. (1992). Regional geohydrologic-geomorphic relationships for the estimation of low-flow statistics. Water Resour. Res., 28(9), 2451-2458.
Wale, A., Rientjes, T., Gieske, A. and Getachew, H. (2009). Ungauged catchment contributions to Lake Tana’s water balance. Hydrol. Process, 23(26):3682–3693.
Warsta, L., Karvonen, T., Koivusalo, H., Paasonen-Kivekas, M. and Taskinen, A. (2013). Simulation of water balance in a clayey, subsurface drained agricultural field with three-dimensional FLUSH model. J. Hydrol., 476, 395–409.
Weeks, E.P. (1979). Barometric fluctuations in wells tapping deep unconfined aquifers. Water Resour Res, 15(5), 1167–1176.
Wu, R.-S. and Shih, D.-S. (2018). Modeling hydrological impacts of groundwater level in the context of climate and land cover change. Terr. Atmos. Ocean. Sci. 29, 341-353.
Yang, H., Choi, H.T. and Lim, H. (2018). Applicability Assessment of Estimation Methods for Baseflow Recession Constants in Small Forest Catchments. Water, 10, 1074.
Yeh, G.T., Huang, G.B., Zhang, F., Cheng, H.P. and Lin, H.C. (2005). WASH123D: A numerical model of flow, thermal transport, and salinity, sediment, and water quality transport in WAterSHed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media. Technical report, US EPA. Department of Civil and Environmental Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL.
Yeh, G.T., Husng, G., Cheng, H.P., Zhang, F., Lin, H.C., Edris, E. and Richards, D. (2006). A first principle, physics based watershed model: WASH123D. In: Singh VP, Frevert DK editors. Chapter 9 in watershed models, CRC Press LLC, 6000 Broken Sound Parkway, NW, (Suite 300) Boca Raton, FL, USA. p. 211–244.
Yeh, G.T., Cheng, H.P., Cheng, J.R. and Lin, J.H. (1998). A numerical model to simulate water flow and contaminant and sediment transport in watershed systems of 1-D stream-river network, 2-D overland regime, and 3-D subsurface media (WASH123D: version 1.0). Technical report CHL-98-19. Waterways experiment station, US Army Corps of Engineers, Vicksburg, MS.
Yeh, G.T., Sharp-Hansen, S., Lester, B., Strobl, R. and Scarbrough, J. (1992). 3DFEMWATER/3DLEWASTE: Numerical codes for delineating wellhead protection areas in agricultural regions based on the assimilative capacity criterion, Rep. EPA/600/R/R-92/223, U.S. Environ. Prot. Agency, Washington, D. C.
Yeh, G.-T., Shih, D.-S. and Cheng, J.-R.C. (2011). An integrated media, integrated processes watershed model. Computers & Fluids, 45 (2011) 2–13.
Young, A., Hughes, D. and Demuth, S. (2008). Estimating low flows at ungauged sites. In: Manual on Low-Flow Estimation and Prediction, Operational Hydrology Report No.50, WMO-No. 1029. Koblenz, Germany.
Zhang, L., Chen, Y.Q.D., Hickel, K. and Shao, Q.X. (2009). Analysis of low-flow characteristics for catchments in Dongjiang Basin, China. Hydrogeol. J., 17(3), 631-640.
Zhu, L., Gong, H., Li, X., Wang, R., Chen, B., Dai, Z. and Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol., 193, 243-255. |