博碩士論文 107322004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:18.117.162.107
姓名 黃敬庭(Jing-Ting Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 智慧型居家機器人用於地震後自動巡查及應變處置之研究
(Research on intelligent home robot used for automatic inspection and emergency treatment after earthquake)
相關論文
★ 應用智慧標籤及數據驅動方法於水接觸結構物之結構評估★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發
★ 基於磁吸附與全向輪技術的鋼結構攀爬機器人開發與驗證★ 基於微型機器學習的智能避障系統在外牆檢測自主移動機器人中的應用
★ 基於ROS的遠端自動多螺栓 檢測機器人系統開發★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究
★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷
★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 台灣由於地震活動十分頻繁,部分行動不便者與老年人會在地震生時跌到或被重物重壓而無法行動,若無人發現並立即救援,可能會釀成悲劇。因此本研究目的為開發一台智慧型居家機器人用於地震後自動巡查並進行緊急應變處置。本研究以移動式平台搭載六軸機械手臂為機器人主體,主控制器核心採用Jetson TX2 AI 嵌入式平台並整合arduino及Mbed微處理器搭配機器人作業系統(Robot Operating System)進行控制。運作方式為當地震速報接收裝置(Earthquake Warning Receiving Device)接獲地震速報時,即時透過接收端搭載的無線溝通裝置向機器人發送訊息,機器人端上的無線溝通裝置會負責等待地震訊息到來,當收獲地震訊息時,裝置在機器人端上的蜂鳴器與LED警示燈便開始運作,首先開啟平時建立之室內平面地圖(SLAM),執行室內定點巡航,並以Jetson TX2人工智慧運算裝置整合深度學習模型及RGB-D深度攝影機進行即時影像辨識和追蹤。再者當機器人系統偵測到有倒地人員時,則會前往該地點,並可透過ROS監控介面監視機器人移動狀況。由於倒地人員可能行動不便但意識清晰,因此最後搭配六軸機械手臂結合攝影機深度訊息基於預訓練的Mobilenet-SSD深度學習模型,辨識倒地者五官位置,並將機械手臂移動至倒地者能進食的範圍,給予適當的飲食或是藥品補給,等候救援。
摘要(英) Due to the frequent earthquake activities in Taiwan, some people with mobility impairments and the elderly will fall or be weighed by heavy objects and become unable to move during the earthquake. If no one finds them and rescues them immediately, it may lead to tragedy. Therefore, the purpose of this research is to develop a smart home robot for automatic inspection and emergency response after an earthquake. In this study, the mobile platform is equipped with a six-axis robotic arm as the main body of the robot. The core of the main controller uses the Jetson TX2 AI embedded platform and integrates Arduino and Mbed microprocessors with a robot operating system (Robot Operating System) for control. The mode of operation is that when the receiving end (PC) receives the earthquake quick report, it will immediately send a message to the robot through the communication module on the receiving end. The communication modules on the robot end will be responsible for waiting for the arrival of the earthquake information. When the earthquakes information is received, it will be mounted on the robot end. The buzzer and LED lights on the computer will start to operate, turn on the normally created indoor flat map (SLAM), perform indoor fixed-point cruises, and use Jetson TX2 combined with deep learning models and depth cameras for real-time image recognition and tracking. When the system detects a person who has fallen on the ground, it will go to the location and send the coordinates to the ROS monitoring system for the caregiver to check. Because the trapped person may be inconvenient to move but has a clear consciousness. At this time, the robot arm combines with the depth camera based on the pre-trained Mobilenet-SSD deep learning model to identify the location of the fallen person′s five senses and move to the range where the fallen person can eat, and give appropriate Food or medicine supplies, waiting for rescue.
關鍵字(中) ★ ROS
★ 六軸機械手臂
★ 導航
★ SLAM
★ 地震
★ 深度學習
關鍵字(英) ★ ROS
★ Six-axis robotic arm
★ Navigation
★ SLAM
★ Earthquake
★ Deep learning
論文目次 目 錄
摘要 i
Abstract ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 論文架構 3
第二章 文獻回顧 4
2-1 整合型機器人應用 4
2-2 倒地人員檢測相關研究 4
2-3 SLAM建圖與機器人自主導航應用 5
2-4 機械手臂與機器視覺相關應用 6
第三章 研究方法 8
3-1 ROS機器人作業系統 8
3-2 系統架構及硬體設計 11
3-2-1 系統架構 11
3-2-2 硬體設計 15
3-3 地震速報介接 24
3-4 雙輪差速驅動底盤 25
3-4-1 PID控制原理 25
3-4-2 Arduino直流馬達驅動 26
3-5 室內地圖建置與導航 31
3-5-1 SLAM建圖 31
3-5-2 導航(Navigation) 32
3-6 6-DOF機械手臂補給 38
3-6-1 MoveIt 38
3-6-2 機械手臂運動學 40
3-6-3 Mbed機械手臂控制 44
3-7 即時影像偵測與辨識 46
3-7-1 Mobilenet-SSD類神經網路 46
3-7-2 深度學習模型訓練與推論 50
3-7-3 像素座標系轉換至世界座標系 53
3-8 毫米波生命跡象探測 56
第四章 系統驗證與討論 57
4-1 地震速報整合機器人測試 58
4-2 SLAM建圖與自主避障導航測試 59
4-3 即時物件追蹤及機械手臂補給 68
4-4 機器人導航補給測試 79
第五章 結論與未來展望 82
5-1 結論 82
5-2 未來展望 82
參考文獻 84
參考文獻 參考文獻
1. Haraoka, T., S. Hayasaka, C. Murata, T. Yamaoka, and T. Ojima, Factors related to furniture anchoring: a method for reducing harm during earthquakes. Disaster medicine and public health preparedness, 2013. 7(1): p. 55-64.
2. Noji, E.K., Acute renal failure in natural disasters. Renal failure, 1992. 14(3): p. 245-249.
3. Balaguer, C., A. Gimenez, A. Jardon, R. Cabas, and R. Correal. Live experimentation of the service robot applications for elderly people care in home environments. in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005. IEEE.
4. Koselka, H., B. Wallach, and D. Gollaher, Autonomous personal service robot. 2007, Google Patents.
5. Reiser, U., C. Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weisshardt, T. Jacobs, C. Parlitz, M. Hägele, and A. Verl. Care-o-bot® 3-creating a product vision for service robot applications by integrating design and technology. in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009. IEEE.
6. Fang, Q., M. Kyrarini, D. Ristic-Durrant, and A. Gräser. RGB-D Camera based 3D Human Mouth Detection and Tracking Towards Robotic Feeding Assistance. in Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference. 2018.
7. Helm, V., S. Ercan, F. Gramazio, and M. Kohler. Mobile robotic fabrication on construction sites: DimRob. in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012. IEEE.
8. Dörfler, K., T. Sandy, M. Giftthaler, F. Gramazio, M. Kohler, and J. Buchli, Mobile robotic brickwork, in Robotic Fabrication in Architecture, Art and Design 2016. 2016, Springer. p. 204-217.
9. Volkhardt, M., F. Schneemann, and H.-M. Gross. Fallen person detection for mobile robots using 3d depth data. in 2013 IEEE International Conference on Systems, Man, and Cybernetics. 2013. IEEE.
10. Antonello, M., M. Carraro, M. Pierobon, and E. Menegatti. Fast and robust detection of fallen people from a mobile robot. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. IEEE.
11. Solbach, M.D. and J.K. Tsotsos. Vision-based fallen person detection for the elderly. in Proceedings of the IEEE International Conference on Computer Vision Workshops. 2017.
12. Iuga, C., P. Drăgan, and L. Bușoniu, Fall monitoring and detection for at-risk persons using a UAV. IFAC-PapersOnLine, 2018. 51(10): p. 199-204.
13. Ciabattoni, L., G. Foresi, A. Monteriu, D.P. Pagnotta, and L. Tomaiuolo. Fall detection system by using ambient intelligence and mobile robots. in 2018 Zooming Innovation in Consumer Technologies Conference (ZINC). 2018. IEEE.
14. Hess, W., D. Kohler, H. Rapp, and D. Andor. Real-time loop closure in 2D LIDAR SLAM. in 2016 IEEE International Conference on Robotics and Automation (ICRA). 2016. IEEE.
15. Pierzchała, M., P. Giguère, and R. Astrup, Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Computers and Electronics in Agriculture, 2018. 145: p. 217-225.
16. Zhou, X.S. and S.I. Roumeliotis. Multi-robot SLAM with unknown initial correspondence: The robot rendezvous case. in 2006 IEEE/RSJ international conference on intelligent robots and systems. 2006. IEEE.
17. Bhattacharya, S., R. Murrieta-Cid, and S. Hutchinson, Optimal paths for landmark-based navigation by differential-drive vehicles with field-of-view constraints. IEEE Transactions on Robotics, 2007. 23(1): p. 47-59.
18. Fox, D. KLD-sampling: Adaptive particle filters. in Advances in neural information processing systems. 2002.
19. Hennes, D., D. Claes, W. Meeussen, and K. Tuyls. Multi-robot collision avoidance with localization uncertainty. in AAMAS. 2012.
20. Duchoň, F., A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica, Path planning with modified a star algorithm for a mobile robot. Procedia Engineering, 2014. 96: p. 59-69.
21. Lee, D., G. Kim, D. Kim, H. Myung, and H.-T. Choi, Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Engineering, 2012. 48: p. 59-68.
22. Benavidez, P. and M. Jamshidi. Mobile robot navigation and target tracking system. in 2011 6th International Conference on System of Systems Engineering. 2011. IEEE.
23. Jung, S., S. Hwang, H. Shin, and D.H. Shim, Perception, guidance, and navigation for indoor autonomous drone racing using deep learning. IEEE Robotics and Automation Letters, 2018. 3(3): p. 2539-2544.
24. Sweet, L.M. and M.C. Good. Re-definition of the robot motion control problem: Effects of plant dynamics, drive system constraints, and user requirements. in The 23rd IEEE conference on decision and control. 1984. IEEE.
25. Lumelsky, V.J. and E. Cheung, Real-time collision avoidance in teleoperated whole-sensitive robot arm manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 1993. 23(1): p. 194-203.
26. Huang, C.-H., C.-S. Hsu, P.-C. Tsai, R.-J. Wang, and W.-J. Wang. Vision based 3-D position control for a robot arm. in 2011 IEEE International Conference on Systems, Man, and Cybernetics. 2011. IEEE.
27. Johns, E., S. Leutenegger, and A.J. Davison. Deep learning a grasp function for grasping under gripper pose uncertainty. in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2016. IEEE.
28. Hernandez, C., M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van Deurzen, M. de Vries, B. Van Mil, J. van Egmond, and R. Burger. Team delft’s robot winner of the amazon picking challenge 2016. in Robot World Cup. 2016. Springer.
29. Quigley, M., K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A.Y. Ng. ROS: an open-source Robot Operating System. in ICRA workshop on open source software. 2009. Kobe, Japan.
30. Quigley, M., B. Gerkey, and W.D. Smart, Programming Robots with ROS: a practical introduction to the Robot Operating System. 2015: " O′Reilly Media, Inc.".
31. Ang, K.H., G. Chong, and Y. Li, PID control system analysis, design, and technology. IEEE transactions on control systems technology, 2005. 13(4): p. 559-576.
32. Mullane, J., B.-N. Vo, M.D. Adams, and W.S. Wijesoma. A random set formulation for Bayesian SLAM. in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2008. IEEE.
33. Yao, J., C. Lin, X. Xie, A.J. Wang, and C.-C. Hung. Path planning for virtual human motion using improved A* star algorithm. in 2010 Seventh international conference on information technology: new generations. 2010. IEEE.
34. Ogren, P. and N.E. Leonard, A convergent dynamic window approach to obstacle avoidance. IEEE Transactions on Robotics, 2005. 21(2): p. 188-195.
35. Chitta, S., MoveIt!: an introduction, in Robot Operating System (ROS). 2016, Springer. p. 3-27.
36. Sucan, I.A., M. Moll, and L.E. Kavraki, The open motion planning library. IEEE Robotics & Automation Magazine, 2012. 19(4): p. 72-82.
37. Corke, P.I., A simple and systematic approach to assigning Denavit–Hartenberg parameters. IEEE transactions on robotics, 2007. 23(3): p. 590-594.
38. Goldenberg, A., B. Benhabib, and R. Fenton, A complete generalized solution to the inverse kinematics of robots. IEEE Journal on Robotics and Automation, 1985. 1(1): p. 14-20.
39. Howard, A.G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
40. Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A.C. Berg. Ssd: Single shot multibox detector. in European conference on computer vision. 2016. Springer.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2020-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明