博碩士論文 107322100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.12.36.175
姓名 溫俊堯(Chun-Yao Wen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發
(Research and development of IoT architecture using UAV to integrate LoRa and magnetic wake-up technology)
相關論文
★ 應用智慧標籤及數據驅動方法於水接觸結構物之結構評估★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究
★ 基於磁吸附與全向輪技術的鋼結構攀爬機器人開發與驗證★ 基於微型機器學習的智能避障系統在外牆檢測自主移動機器人中的應用
★ 基於ROS的遠端自動多螺栓 檢測機器人系統開發★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究
★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷
★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 近年來物聯網及無線感測技術已廣泛的應用於結構健康監測上。此
類系 統大多為電池供電,必須定時休眠以延長電池使用壽命。此外,多
數的系統都建置在較難以到達的區域,常利用傳輸中繼站(含資料擷取
器 ),以 3G/4G 等無線方式傳回遠端資料平台。 在實務上,固定式中繼
站會因為災害等事件造成毀損,因此要隨時準備好臨時中繼站;再來,
中繼站設在固定位置,理論上越高越好,但實務上很難辦到,所以才有
用 UAV 的想法。 因此,本研究目的為開發並整合 LoRa( Long Range)
與磁導喚醒技術的 UAV(unmanned aerial vehicle) 行動閘道器 (UAVbased Moving Gateway),完成了初步 UAV 結構健康監測物聯網架構,
包含了地面監測中心用來發送喚醒訊息並藉由 LoRa 無線傳輸發送至
UAV 行動閘道器,及透過 mission planner 介面監控 UAV 任務與飛行
狀態; UAV 行動閘道器則以四旋翼無人機與 MCU(Micro-Control Unit)
控制板為主要核心,由微控器 (MCU)整合各項感測器與微控制器,如低
頻發射天線與 LoRa,接收從地面監測中心所傳出之指令,再將指令透
過 LoRa 無線傳輸至感測節點,或是由低頻發射天線透過 MI(Magnetic
Induction)技術觸發喚醒感測節點運行,再接收由感測節點所傳回之資
料,由 LoRa 無線傳輸傳至地面監測中心;感測節點則由微控器 (MCU)
為主要核心,由微控器 (MCU)整合各項感測器與微控制器,接收從 UAV
ii
行動閘道器 所傳出之指令,再將感測器所得到之感測資料無線傳輸回
UAV 行動閘道器。本研究結果表明本系統可以成功的遠端利用喚醒睡
眠中之感測節點,並可發送訊號令其從睡眠狀態喚醒。低頻天線在 12V
供電之情況下,觸發距離約為 1~3 公尺。而 LoRa 於近距離下幾乎不
會有信號延遲與掉包率之結果,若再加上 4G 或 5G 通訊,則會提高
UAV 行動閘道器之使用性。
摘要(英) In recent years, the Internet of Things and wireless sensing technologies have been widely
used in structural health monitoring. Most of these systems are battery-powered and must
sleep periodically to extend battery life. In addition, most systems are built in areas that
are difficult to reach, and often use transmission relay stations (including data capture
devices) to transmit back to remote data platforms via wireless methods such as 3G/4G.
In practice, fixed relay stations will be damaged due to disasters and other events, so you
should always be prepared for temporary relay stations; again, relay stations should be
located in fixed locations. In theory, the higher the better, but in practice, it is difficult to
do so, so UAV is useful. Thoughts. Therefore, the purpose of this research is to develop
and integrate LoRa (Long Range) and UAV (unmanned aerial vehicle) mobile gateway
(UAV-based Moving Gateway) that integrates LoRa (Long Range) and permeance wake
technology, and completes the preliminary UAV structural health monitoring IoT
architecture, including The ground monitoring center is used to send wake-up messages
and sent to the UAV mobile gateway via LoRa wireless transmission, and to monitor the
UAV mission and flight status through the mission planner interface; the UAV mobile
gateway uses quadrotor drones and MCU (Micro -Control Unit) The control board is the
main core. The microcontroller (MCU) integrates various sensors and microcontrollers,
such as low-frequency transmitting antennas and LoRa, to receive instructions from the
ground monitoring center, and then transmit the instructions LoRa is wirelessly
transmitted to the sensing node, or the low-frequency transmitting antenna triggers the
wake-up of the sensing node to operate through MI (Magnetic Induction) technology, and
then receives the data returned by the sensing node, and transmits it to the ground
monitoring center by LoRa wireless transmission; The sensor node is composed of a
microcontroller (MCU) as the main core. The microcontroller (MCU) integrates various
iv
sensors and microcontrollers, receives instructions from the UAV mobile gateway, and
then detects The sensing data obtained by the device is wirelessly transmitted back to the
UAV mobile gateway. The results of this research show that the system can successfully
remotely use to wake up the sensing node in sleep and send a signal to wake it from sleep.
When the low-frequency antenna is powered by 12V, the trigger distance is about 1 to 3
meters. In LoRa, there is almost no signal delay and packet drop rate at short distances.
If 4G or 5G communication is added, the usability of UAV mobile gateways will be
improved.
關鍵字(中) ★ 無人機 關鍵字(英) ★ UAV
論文目次 摘要 i
Abstract iii
誌 謝 v
目 錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1研究背景與動機 1
1-2研究目的 2
1-3論文架構 2
第二章 文獻回顧 4
2-1 UAV在土木工程之相關研究 4
2-2 以UAV做為中繼站之相關研究 5
2-3 LoRaWAN低功耗廣域網路之相關研究 7
2-4 MI磁感應系統相關研究 8
第三章 研究方法 10
3-1 系統架構 10
3-2 硬體設計 13
3-3軟體開發工具 29
3-4 通訊技術 32
第四章 實驗規劃與程式設計 36
4-1 實驗參數說明 40
4-2不同功率情況下LoRa傳輸最遠距離測試與傳輸成功率之試驗(Case 1.) (測試LoRa在不同功率之極限傳輸距離與成功率) 40
4-3 不同傾斜角度之MI觸發距離實驗(12V供電) (Case 2.) (測試MI發射天線與MI接收器於不同傾斜角度對MI觸發距離之影響) 43
4-4 金屬、磁場與電磁波對MI觸發距離影響之試驗(12V供電) (Case 3.) (測試不同影響物對MI觸發距離與成功率之影響) 45
4-5 以UAV為中繼站之飛行狀態下MI觸發水平距離與觸發成功率之試驗(12V供電) (Case 4.) (測試UAV不同飛行水平距離對MI觸發之影響) 47
4-6 以UAV為中繼站之飛行狀態下MI觸發高度與觸發成功率之試驗(Case 5.) (測試UAV不同飛行高度對MI觸發之影響) 50
4-7 以UAV為中繼站之飛行狀態下LoRa不同功率之不同傳輸距離之傳輸成功率實驗(Case 6.) (測試LoRa在加入中繼站之傳輸成功率差異) 52
4-8 以UAV為中繼站之飛行狀態下UAV不同飛行高度LoRa不同功率之傳輸距離與傳輸成功率實驗(Case 7.) (測試LoRa在不同飛行高度之傳輸成功率影響) 55
4-9 以UAV為中繼站之飛行狀態下不同功率情況下LoRa傳輸最遠距離與傳輸成功率實驗(Case 8.)(測試LoRa在加入中繼站之極限傳輸距離) 57
第五章 實驗結果與討論 60
5-1 不同功率情況下LoRa傳輸最遠距離測試與傳輸成功率之試驗(Case 1.) 60
5-2 不同傾斜角度之MI觸發距離實驗(12V供電) (Case 2.) 65
5- 3 金屬、磁場與電磁波對MI觸發距離影響之試驗(12V供電) (Case 3.) 68
5-4 以UAV為中繼站之飛行狀態下MI觸發水平距離與觸發成功率之試驗(12V供電) (Case 4.) 71
5-5 以UAV為中繼站之飛行狀態下MI觸發高度與觸發成功率之試驗(Case 5.) 73
5-6 以UAV為中繼站之飛行狀態下LoRa不同功率之不同傳輸距離之傳輸成功率實驗(Case 6.) 76
5-7 以UAV為中繼站之飛行狀態下UAV不同飛行高度LoRa不同功率之傳輸距離與傳輸成功率實驗(Case 7.) 79
5-8 以UAV為中繼站之飛行狀態下不同功率情況下LoRa傳輸最遠距離與傳輸成功率實驗(Case 8.) 83
第六章 結論與未來展望 89
6-1 結論 89
6-2 未來展望 90
參考文獻 91
參考文獻 1. Yamada, M., et al. Development and field test of novel two-wheeled UAV for bridge inspections. in 2017 International Conference on Unmanned Aircraft Systems (ICUAS). 2017.
2. Máthé, K. and L. Busoniu, Vision and Control for UAVs: A Survey of General Methods andof Inexpensive Platforms for Infrastructure Inspection. Sensors (Basel, Switzerland), 15: p. 14887-916,2015.
3. Eschmann, C. and T. Wundsam, Web-Based Georeferenced 3D Inspection and Monitoring of Bridges with Unmanned Aircraft Systems. Journal of Surveying Engineering, 143(3): p. 04017003,2017.
4. Abdullah, A., I. Machfudin, and M. Zamuswara, Flying weather network system based on wireless sensor, a flights investigation. Journal of Physics: Conference Series, 1193: p. 012016,2019.
5. Jordan, S., et al., State-of-the-art technologies for UAV inspections. IET Radar, Sonar & Navigation, 12(2): p. 151-164,2018.
6. Hallermann, N. and G. Morgenthal, Visual inspection strategies for large bridges using Unmanned Aerial Vehicles (UAV),2014.
7. Boccardo, P., et al., UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors (Basel, Switzerland), 15: p. 15717-15737,2015.
8. Erdelj, M., M. Król, and E. Natalizio, Wireless Sensor Networks and Multi-UAV systems for natural disaster management. Computer Networks, 124: p. 72-86,2017.
9. Mark C. Tatum*, J.L., Unmanned Aircraft System Applications In Construction. CC BY-NC-ND license, 2017.
10. Park, C., et al., Formation Flight of Multiple UAVs Using Onboard Information Sharing. Sensors, 15: p. 17397-17419,2015.
11. Murcia, H., et al., Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture. Sensors, 2015.
12. Mukherjee, A., et al., Distributed aerial processing for IoT-based edge UAV swarms in smart farming. Computer Networks, 167: p. 107038,2020.
13. Jawhar, I., N. Mohamed, and J. Al-Jaroodi, UAV-based data communication in wireless sensor networks: Models and strategies. 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015, p. 687-694,2015
14. Dong, M., et al., UAV-assisted data gathering in wireless sensor networks. The Journal of Supercomputing, 70: p. 1142-1155,2014.
15. Zhan, P., K. Yu, and A.L. Swindlehurst, Wireless Relay Communications with Unmanned Aerial Vehicles: Performance and Optimization. IEEE Transactions on Aerospace and Electronic Systems, 47(3),05 July 2011.
16. Mozaffari, M., et al., Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications. IEEE Transactions on Wireless Communications, p. 16,2017.
17. Yue, W. and Z. Jiang, Path Planning for UAV to Collect Sensors Data Based on Spiral Decomposition. Procedia Computer Science, 131: p. 873-879,2018.
18. Liu, B. and H. Zhu, Energy-Effective Data Gathering for UAV-Aided Wireless Sensor Networks. Sensors (Basel, Switzerland), 19(11): p. 2506,2019.
19. Feltrin, Luca, et al. "LoRaWAN: Evaluation of link-and system-level performance." IEEE Internet of Things Journal 5.3: 2249-2258. (2018)
20. Sanchez-Iborra, Ramon, et al. "Performance evaluation of LoRa considering scenario conditions." Sensors 18.3: 772. (2018)
21. Pasolini, Gianni, et al. "Smart city pilot projects using LoRa and IEEE802. 15.4 technologies." Sensors 18.4: 1118. (2018)
22. Adelantado, Ferran, et al. "Understanding the limits of LoRaWAN." IEEE Communications magazine 55.9: 34-40. (2017)
23. Chen, Ye. Design of magneto-inductive waveguide for sensing applications. Diss. 2014.
24. Ahmed, Niaz, et al. "A multi-coil magneto-inductive transceiver for low-cost wireless sensor networks." 2014 Underwater Communications and Networking (UComms). IEEE, 2014.
25. Wang, Yibin, Andrew Dobbin, and Jean-François Bousquet. "A compact low-power underwater magneto-inductive modem." Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. 2016.
26. Tan, Xin, Zhi Sun, and Ian F. Akyildiz. "A testbed of magnetic induction-based communication system for underground applications." arXiv preprint arXiv:1503.02519 (2015).
27. Sun, Y. & Xu, S. & Shi, W. & Wu, T. & Wang, X. & Niu, H.. Analysis and Implementation of Magnetic Induction Wireless Underground Communication System. Chinese Journal of Sensors and Actuators. 30. 904-908.
28. Zhang, Zhengqing, et al. "Cooperative magnetic induction based through-the-earth communication." 2014 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2014.
29. Yan, Bin, et al. "Design of induction magnetometer receiving sensor for through-the-earth communications." IEEE Sensors Journal 15.2: 1139-1144. (2014)
30. Tajudeen, Mohammed Ashiq Rahman. "GENERAL WAKE-UP RADIO MODULE FOR ISM BAND." (2018).
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2021-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明