以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:124 、訪客IP:3.142.35.54
姓名 陳思羽(Sz-Yu Chen) 查詢紙本館藏 畢業系所 光機電工程研究所 論文名稱 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究
(Achieving Optimum Process Parameters and Prediction of Remaining Useful Life of Soldering Tip for Drag Soldering of Printed Circuit Board)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 隨著電子產業對生產效率需求提升,焊接良率成為連接器製造過程中最重要指標。焊接過程產生瑕疵焊點時,會導致產品功能直接失效,因此發展預測性維護是極為重要。本研究以電子零組件拉焊製程工站為智慧化目標,以RJ45 電子零組件為拉焊對象,利用製程之參數建構深度學習模型及長短期記憶模型預測設備元件之剩餘使用壽命,並以感光耦合元件擷取其影像進行分析,求出製程參數優化組及烙鐵頭剩餘使用壽命預測。
本研究以拉焊製程之參數建構深度神經網路(Deep Neural Network, DNN),從製程參數中選出重要幾項參數因子為以下3 項:烙鐵頭溫度、拉焊速度及錫絲出錫速度。透過類神經網路訓練後得到一組製程參數優化,烙鐵頭溫度:363 C、拉焊速度:7 mm/s、錫絲出錫速度:15 mm/s。此製程參數優化組預測焊點良率為99.998%且模型平均誤差為0.0179。得知製程參數優化組後進行實驗驗證,並利用2 台照相機分別將烙鐵頭及電路板影像記錄下來,隨後經影像處理後得知烙鐵頭上所沾錫區域值、沾錫區域重心位置及烙鐵頭磨耗長度。將此數據資料利用長短期記憶模型建立預測烙鐵頭剩餘使用壽(Remaining Useful Life, RUL)之模型,以在發生瑕疵焊點導致電路板失效前發出適當預警,及時更換烙鐵頭。
本研究目標將達成拉焊製程參數優化以及烙鐵頭剩餘使用壽命評估,達到智慧製造的目的。準確更換烙鐵頭時機並提升產品良率,以及降低物料庫存之成本。摘要(英) With the increasing demand for production efficiency in the electronics industry.Electronic soldering is the most important process in the connector manufacturing process.
When this process produces defective solder joints, it will lead to the direct failure of product functions. Therefore the development of predictive maintenance is extremely important. This study applies machine learning on the drag soldering process for printed circuit board (PCB) of RJ45 electronic connector. Using the process parameters to construct the deep neural networks(DNN) model and the long short-term memory (LSTM) model enables us to predict the remaining useful life of the soldering tip based on the captured images of the soldering tip.
In this study, a DNN model was built based on the parameters of the drag soldering process. After capturing the soldering images by cameras, DNN was trained to achieve the optimum process parameters, including soldering temperature of 363℃, soldering speed of 7mm/s, and soldering tin feeding rate of 15mm/s. A high PCB yield of 99.998% was predicted by using the attained optimum drag-soldering process parameters. Then, the average error of this model is 0.0179. Experimental verification was performed after learning the process parameter optimization group. Two cameras were used to record the soldering tip and PCB images respectively. After image processing, the soldering area on the soldering tip, the position of the center of gravity of the soldering area and the abrasion length of the soldering tip were obtained. The images of soldering iron tip and soldering joints were then used by LSTM to predict the RUL of the soldering iron tip. According to the predicted RUL, the soldering iron can be replaced in advance to prevent defective soldering solder joints on PCB.
The goal of this research is to achieve optimum drag soldering parameters and to evaluate the remaining useful life of the soldering tip. Timely replace ment of the soldering tip improves product yield, as well as reduces the cost of material inventory.關鍵字(中) ★ 拉焊
★ 電路板
★ 深度神經網路
★ 製程參數優化
★ 長短期記憶
★ 剩餘使用壽命關鍵字(英) ★ Drag soldering
★ Printed Circuit Board
★ Deep Neural Network
★ Optimum Process Parameter
★ Long Short Term Memory
★ Remaining Useful Life Prediction論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號定義 xi
第1 章、緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-2-1 影像處理分析刀具磨耗量 2
1-2-2 電子零組件焊接分析 2
1-2-3 類神經網路演算法於工程問題之應用 3
1-3 研究動機與目的 5
1-4 論文架構 6
第2 章、基礎理論 7
2-1 類神經網路(Artificial neural network, ANN) 7
2-1-1 神經網路的原理 7
2-1-2 神經網路的架構 8
2-1-3 神經網路的學習方式 9
2-2 深度學習(Deep Learning, DL) 10
2-2-1 深度神經網路(Deep Neural Networks, DNN) 11
2-2-2 遞歸神經網路(Recurrent Neural Network, RNN) 11
2-2-3 長短期記憶神經網路(Long Short-Term Memory, LSTM) 12
2-3 剩餘使用壽命(Remaining Useful Life, RUL) 14
2-4 感光耦合元件(Charge-coupled device, 照相機) 15
2-4-1 照相機主要結構與原理 15
2-4-2 照相機與鏡頭各部參數定義 16
第3 章、影像處理(Image processing) 22
3-1 影像處理流程 22
3-2 對比度調整 24
3-3 歐蘇法二值化 (Ossuary Binary) 26
3-4 雜訊濾波 27
3-5 邊緣檢測(Edge detection) 27
3-6 數學形態學(Mathematical morphology) 28
3-7 制定影像座標系 29
3-8 抓取特徵 29
3-8-1 烙鐵頭沾錫區域及沾錫區域重心位置 29
3-8-2 計算烙鐵頭磨耗長度 30
第4 章、製程參數優化 31
4-1 製程指標參數優化之方法 31
4-1-1 實驗規劃 32
4-1-2 實驗數據 35
4-1-3 機器學習模型訓練 40
4-2 製程參數優化系統架構 41
4-2-1 製程參數優化系統功能 41
4-2-2 製程參數優化系統流程 41
4-3 實驗驗證 42
第5 章、烙鐵頭剩餘使用壽命預測 46
5-1 烙鐵頭剩餘使用壽命預測之方法 46
5-1-1 實驗規劃 47
5-1-2 實驗數據 50
5-1-3 機器學習模型訓練 53
5-2 烙鐵頭剩餘使用壽命預測系統架構 53
5-2-1 烙鐵頭剩餘使用壽命預測系統功能 53
5-2-2 烙鐵頭剩餘使用壽命預測系統流程 55
5-3 實驗驗證 56
第6 章、結論與未來展望 58
6-1 結論 58
6-2 未來展望 59
參考文獻 60參考文獻 [1] 台灣趨勢研究股份有限公司: 被動電子元件製造業發展趨勢. (2012).
https://www.twtrend.com/upload/shares/a_13282361700.pdf.
[2] S. Kurada and I. Bradley, "A machine vision system for tool wear assessment," vol. 30,no. 4, pp. 295-304, 1997.
[3] D. Kerr, J. Pengilley, and T. Garwood, "Assessment and visualisation of machine tool wear using computer vision," vol. 28, no. 7-8, pp. 781-791, 2006.
[4] Y. Lin, W. Deng, J. Shie, and M. Yang, "Optimization of reflow soldering process for BGA packages by artificial neural network," 2007.
[5] M. Liukkonen, E. Havia, and A. Hiltunen, "Computational intelligence in mass soldering of electronics–A survey," vol. 39, no. 10, pp. 9928-9937, 2012.
[6] H. Lee and M. Chen, "Influence of intermetallic compounds on the adhesive strength of solder joints," vol. 333, no. 1-2, pp. 24-34, 2002.
[7] 張翊翔, "電子零件浸焊製程之智能性不良率評估與異常診斷模型建構研究," 碩士, 機械工程學系, 國立中央大學, 桃園市, 2019.
[8] 王崇任, "應用虛擬量測技術於機台預測保養," 碩士, 製造資訊與系統研究所碩博士班, 國立成功大學, 台南市, 2012.
[9] M. Liukkonen, E. Havia, H. Leinonen, and A. Hiltunen, "Application of self-organizing maps in analysis of wave soldering process," vol. 36, no. 3, pp. 4604-4609, 2009.
[10] 葉典瓚, "建構拉焊機感測系統之人機介面與機器學習," 碩士, 光機電工程研究所,國立中央大學, 桃園市, 2019.
[11] A. Kassim, Z. Mian, and M. Mannan, "Connectivity oriented fast Hough transform for tool wear monitoring," vol. 37, no. 9, pp. 1925-1933, 2004.
[12] T. Benkedjouh, K. Medjaher, N. Zerhouni, and S. Rechak, "Fault prognostic of bearings by using support vector data description," in 2012 IEEE Conference on Prognostics and Health Management, 2012, pp. 1-7: IEEE.
[13] 許哲昇, "使用長短期記憶深度學習 之機器剩餘可用壽命預估," 碩士, 資訊工程學系, 國立中央大學, 桃園縣, 2017.
[14] 湧德電子:RJ45ICMConnector. (2019).
http://www.ude-corp.com/frontproduct/product1/lang/en/BigId/50.html.
[15] D. H. Hubel, Wiesel, T.N., Receptive Fields Of Single Neurone In The Cat′s Striate Cortex. Journal of Physiology, (1959)148.
[16] 林大貴, TensorFlow+Kearas 深度學習人工智慧實務應用. 博碩文化, 2017.
[17] S. Russell and P. Norvig, "Artificial intelligence: a modern approach," 2002.
[18] S. Mirjalili, Python 機器學習. 博碩文化, 2018.
[19] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 2016.
[20] Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives," vol. 35, no. 8, pp. 1798-1828, 2013.
[21] U. L. Networks: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
[22] S. Hochreiter and J. Schmidhuber, "Long short-term memory," vol. 9, no. 8, pp. 1735-1780, 1997.
[23] T. Wang, J. Yu, D. Siegel, and J. Lee, "A similarity-based prognostics approach for remaining useful life estimation of engineered systems," in 2008 international conference on prognostics and health management, 2008, pp. 1-6: IEEE.
[24] W. Boyle and G.Smith, "Charge-coupled devices-a new approach to mis devicestructures," vol. 8, no. 7, pp. 18-27, 1971.
[25] PanasonicCCD 感測元件介紹:
http://av.jpn.support.panasonic.com/support/dsc/knowhow/knowhow27.html.
[26] 陳煜彬, "應用機器視覺之新式晶圓定位方法," 碩士, 光機電工程研究所, 國立中央大學, 桃園市, 2011.
[27] 陳亮嘉,光學影像之基礎課程講義,
"http://140.112.14.7/~measlab/course/2013/%E9%87%8F%E6%B8%AC%E6%8A%80%E8%A1%93%E6%87%89%E7%94%A8/1-%E5%85%89%E5%AD%B8%E5%BD%B1%E5%83%8F%E4%B9%8B%E5%9F%
BA%E7%A4%8E%20(NTU).pdf."
[28] 張軒慈, "應用繞射光學元件之齒輪量測系統開發," 碩士, 機械工程學系, 國立中央大學, 桃園市, 2016.
[29] 快門速度、光圈及ISO 曝光鐵三角介紹:
https://medium.com/@odianumeighodalo/things-i-wish-i-knew-about-photographybefore-my-first-photoshoot-68558eca415a.
[30] 歐智達光學檢測光源介紹:
http://bloggerkevinyu.blogspot.com/2017/08/aoilightsource.html.
[31] W. Gonzalez, 繆紹綱,3Ed. 數位影像處理, 台北市:台灣培生教育出版股份有限公司, 2009.
[32] A. McAndrew, 徐曉珮, 3Ed. 數位影像處理,台北市:新加坡商聖智學習亞洲私人有限公司台灣分公司, 2009.
[33] Y. Kim, "Contrast enhancement using brightness preserving bi-histogram equalization,"vol. 43, no. 1, pp. 1-8, 1997.
[34] R. Gonzalez, R. Woods, and S. Eddins, Digital image processing using MATLAB.Pearson Education India, 2004.
[35] N. Otsu, and cybernetics, "A threshold selection method from gray-level histograms,"vol. 9, no. 1, pp. 62-66, 1979.
[36] 李朱育等編著, 光機電產業設備系統設計. 台北市:五南圖書出版股份有限公司,2013.
[37] 马艳 and 张治辉工矿自动化, "几种边缘检测算子的比较," no. 1, pp. 54-56, 2004.
[38] 吳明衛, "自動化臉部表情分析系統," 碩士, 資訊工程學系碩博士班, 國立成功大學, 台南市, 2003.
[39] D. Marr and S. Hildreth, "Theory of edge detection," vol. 207, no. 1167, pp. 187-217,1980.
[40] J. Canny, "Finding Edges and Lines in Images," MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB1983, issue 720.指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2020-12-3 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare