參考文獻 |
1. Braren, L.K., “Gear Transmission”, US Patent 1694031, 1928.
2. Botsiber, D. W. and Kingston, L., “Design and Performance of the Cycloid Speed Reducer”, Machine Design, pp. 65-69, 1956.
3. Ogata, S. and Taki, K., “Planetary Reduction Gear”. US Patent 4898065 A, 1990.
4. Fujimoto, K. ,“Eccentric Orbiting Type Speed Reducer”. US Patent 6508737 B2, 2003.
5. Nohara, O. and Yokoyama, K., “Eccentric Oscillating-type Speed Reducer”. US Patent 6679801 B2, 2004.
6. Reeve, J., Cam for Industry, Mechanical Engineering Publications Limited, London, England, 1995.
7. Norton, R. L., Design of Machinery, 3rd ed., McGraw-Hill, New York, U.S.A., Chap. 8-Chap. 9, 2004.
8. Litvin F. L., Gear Geometry and Applied Theory, PTR Prentice-Hall, Englewood Cliffs, New Jersey, U. S. A., 1994.
9. Dooner, D. B. and Seireg, A. A.: The Kinematic Geometry of Gearing, John Wiley & Sons, New York, U.S.A., 1995.
10. Blanche, J. G. and Yang, F. C. H., ”Cycloid Drives With Machineing Tolerances,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111,pp. 337-344,1989.
11. Yang, F. C. H. and Blanche, J. G.,”Design and Application Guidelines for Cycloid Drives with Machineing Tolerances,” Mech. Mach. Theory, Vol. 25, No. 5, pp. 487-501, 1990. https://doi.org/10.1016/0094-114X(90)90064-Q
12. Dizioglu, B., ” Über die reellen singulären punkte der zykloiden, epi-und hypozykloiden,” Mech. Mach. Theory, Vol. 11, No. 3, pp. 223-224, 1986.
https://doi.org/10.1016/0094-114X(86)90097-2
13. Litvin, F. L. and Feng, P.-H.,“Computerized Design and Generation of Cycloidal Gear,” Mech. Mach. Theory, Vol. 31, No. 7, pp. 891-911, 1996.
https://doi.org/10.1016/0094-114X(95)00115-F
14. Mimmi, G. C. and Pennacchi, P. E.,” Non-undercutting Conditions in Internal Gears,” Mech. Mach. Theory, Vol. 35, No. 4, pp. 477-490, 2000.
https://doi.org/10.1016/S0094-114X(99)00028-2
15. Hwang, Y. -W. and Hsieh, C. -F.,” Determination of Surface Singularities of a Cycloidal Gear Drive with Inner Meshing”, Mathematical and Computer Modelling, Vol. 45, pp. 340-354, 2007. https://doi.org/10.1016/j.mcm.2006.05.010
16. Fong, Z. H. and Tsay, C. W.: “Study on the Undercutting of Internal Cycloidal Gear with Small Tooth Difference”, J. CSME, Vol.21, No.4, pp.359-367, 2000.
17. Hsieh, C.-F.,” The Effect on Dynamics of Using a New Transmission Design for Eccentric Speed Reducers”, Mech. Mach. Theory, Vol. 80, pp. 1-16, 2014.
https://doi.org/10.1016/j.mechmachtheory.2014.04.020
18. Hsieh, C.-F.,” Traditional Versus Improved Designs for Cycloidal Speed Reducers with a Small Tooth Difference: The Effect on Dynamics”, Mech. Mach. Theory, Vol. 86, pp. 15-35, 2015. https://doi.org/10.1016/j.mechmachtheory.2014.11.013
19. Shin, J. -H. and Kwon, S. -M.,” On the Lobe Profile Design in a Cycloid Reducer Using Instant Velocity Center,” Mech. Mach. Theory, Vol. 41, No. 5, pp. 596-616, 2006. https://doi.org/10.1016/j.mechmachtheory.2005.08.001
20. Xu, H. et al.: Handbook of Mechanical Design, Vol.3, pp.24-92~24-125, 1995.
21. Sensinger, J. W., “Unified Approach to Cycloid Drive Profile, Stress, and Efficiency Optimization,” ASME J. Mech. Des., Vol. 132, pp.024503-1~5, 2010.
22. Zeng, D., Liu, G., Mao, H., He, K. and Du, R., "Comparison of Two Cycloidal Wheel Modification Methods," 2018 IEEE International Conference on Information and Automation (ICIA), Wuyishan, China, 2018, pp. 1274-1278. https://doi.org/10.1109/ICInfA.2018.8812407
23. Ren, Z.-Y., Mao, S.-M., Guo, W.-C. and Guo, Z. Guo,”Tooth Modification and Dynamic Performance of the Cycloidal Drive”, Mechanical Systems and Signal Processing, Vol. 85, pp.857-866, 2017. https://doi.org/10.1016/j.ymssp.2016.09.029
24. Li, T., An, X., Deng, X., Li, J. and Li, Y.,”A New Tooth Profile Modification Method of Cycloidal Gears in Precision Reducers for Robots”, Appl. Sci. 2020, 10, 1266.
https://doi.org/10.3390/app10041266
25. Zhang, J., Chen, B. and Lyu, S.-K., "Mathematical model and analysis on cycloid planetary gear," 2011 Second International Conference on Mechanic Automation and Control Engineering, Hohhot, 2011, pp. 400-403.
https://doi.org/10.1109/MACE.2011.5986944.
26. Lin, W.-S., Shih, Y.-P., Lee, J.-J.,“Design of a Two-Stage Cycloidal Gear Reducer with Tooth Modifications,” Mech. Mach. Theory, Vol. 79, pp. 184-197, 2014.
https://doi.org/10.1016/j.mechmachtheory.2014.04.009
27. Lin, K.-H., Hsieh, C.C., and Lee, J. J., “A Simplified Method for the Kinematic Error Analysis of Cycloidal Gear Drives,” Proceedings of JSME Int’l Conf. on Motion and Power Transmissions, Feb. 28- Mar. 3, 2017, Kyoto, Japan.
28. Meng, Y., Wu, C. anf Ling L.,” Mathematical Modeling of the Transmission Performance of 2K–H Pin Cycloid Planetary Mechanism,” Mech. Mach. Theory, Vol. 42, No. 7, pp. 776-790, 2007. https://doi.org/10.1016/j.mechmachtheory.2006.07.003
29. Tran, T.L., Pham, A.D. and Ahn, H.,”Lost Motion Analysis of One Stage Cycloid Reducer Considering Tolerances,” Int. J. Precis. Eng. Manuf. 17, pp. 1009–1016 (2016). https://doi.org/10.1007/s12541-016-0123-8
30. Lin, K.-H., Chan, K.-Y., Lee, J-J., “Kinematic Error Analysis and Tolerance Allocation of Cycloidal Gear Reducers,” Mech. Mach. Theory, Vol. 124, pp. 73-91, 2018. https://doi.org/10.1016/j.mechmachtheory.2017.12.028
31. Hidaka, T., Wang, H.-Y., Matsumoto, K. and Hashimoto, M., “Rotational Transmission Error of K-H-V-Planetary Gears with Cycloid Gear, 1st Report, Analytical Method of the Rotational Transmission Error”, Transactions of JSME, Ser. C, Vol. 60, No. 570, pp. 645-653, 1994.
32. Ishida, T., Wang, H., Hidaka, T. and Hashimoto,M. , “Rotational Transmission Error of K-H-V-Planetary Gears with Cycloid Gear, 2nd Report, Effects of Manufacturing and Assembly Errors on Rotational Transmission Error”, Transactions of JSME, Ser. C, Vol. 60, No. 578, pp. 278-285, 1994.
33. Wang, H., Ishida, T., Hidaka, T. and Hashimoto, M.: “Rotational Transmission Error of K-H-V-Planetary Gears with Cycloid Gear, 3rd Report, Mutual Effects of Errors of the Elements on the Rotational Transmission Error”, Transactions of JSME, Ser. C, Vol. 60, No. 578, pp. 286-293, 1994.
34. International Organization for Standardization(ISO), “ISO 281: Rolling bearings — Dynamic load ratings and rating life,” 2007.
35. Lundberg G., Elastische Berührung zweier Halbräume[J] 1939,Forschung auf dem Gebiete des Ingenieurwesens(5):201~211.
36. Lundberg G. and Palmgren A., Dynamic capacity of rolling bearings. Acta Polytech Scand Mech Eng 1947;1(3):1–52.
37. Lundberg G. and Palmgren A., Dynamic capacity of roller bearings. Acta Polytech Scand Mech Eng 1952;2(4):96–127.
38. International Organization for Standardization(ISO), “ISO/TS 16281: Rolling bearings - Methods for calculating the modified reference rating life for universally loaded bearings,” 2008.
39. Torstenfelt, B., & Fredriksson, B., “Pressure distribution in crowned roller contacts,” Engineering Analysis, Vol. 1, No. 1, pp. 32–39, 1984
https://doi.org/10.1016/0264-682X(84)90007-8
40. Horng, T.-L.,” Analyses of stress components for a circular crowned roller compressed between two flat plates” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 221, No. 5, pp. 581-589, 2007
https://doi.org/10.1243/13506501JET263
41. Xia, X., Zhu, S., Jia, C. and Niu, R.,” Study of Interval of Arc Modification Length of Cylindrical Roller Using ANSYS,” International Journal of Engineering Science, Vol. 1,No. 1, pp. 8-13,2012.
42. Poplawski, J. V., Peters, S. M. and Zaretsky, E. V. ,“Effect Of Roller Profile On Cylindrical Roller Bearing Life Prediction—Part II Comparison of Roller Profiles,” Tribology Transactions, Vol. 44, No. 3, pp. 417-427, 2001.
https://doi.org/10.1080/10402000108982476
43. Ioannides, E. and Harris, T. A., “new fatigue life model for rolling bearings,” ASME J. Tribol., 107, pp. 367–377, 1985. https://doi.org/10.1115/1.3261081
44. Warda, B. and Chudsik, A.,” Fatigue Life Prediction of the Radial Roller Bearing with the Correction of Roller Generators,” International Journal of Mechanical Sciences, Vol. 89, pp. 299-310, 2014. https://doi.org/10.1016/j.ijmecsci.2014.09.015
45. Harris, T. A. and Barns, R. M.,” Life Ratings for Ball and Roller Bearings,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 215, no. 6, pp. 577-595, 2001. https://doi.org/10.1243/1350650011543817
46. Zaretsky, E. V., Poplawski, J. V., Peters, Steven M,” Comparison of Life Theories for Rolling-Element Bearings,” NASA/TP—2013-215305, 2013.
47. Zaretsky, E. V.,”Rolling Bearing Life Prediction, Theory, and Application,” NASA-TM-106585, 2013.
48. Sadeghi, F., Jalalahmadi, B., Slack, T. S., Raje, N., and Arakere, N. K. ,"A Review of Rolling Contact Fatigue." ASME. J. Tribol. October 2009; 131(4): 041403.
https://doi.org/10.1115/1.3209132
49. Weber, C. and Banaschek, K.“ Formänderung und Profilrücknahme bei gerad- und schrägverzahnten Rädern,“ Bd. 11, Schriftenreihei Antriebstechnik, Brauncshweig: Vieweg Verlag, 1955.
50. Sigg, H., “AGMA 109.16: Profile and Longitudinal Corrections on Involute Gears,” Semi-Anuual Meeting of the America Gear Manufacture Association, 1965.
51. Litvin , F. L., Vecchiato , D., Demenego, A., Karedes , E., Hansen, B., and Handschuh, R.,"Design of One Stage Planetary Gear Train With Improved Conditions of Load Distribution and Reduced Transmission Errors ." ASME. J. Mech. Des.,vol. 124, No. 4, pp. 745–752,2002. https://doi.org/10.1115/1.1515797
52. Beghini, M., Bragallini, G. M. Presicce, F., and Santus, C.,“Influence of the linear tip relief modification in spur gears and experimental evidence,” Proceedings ICEM12. Bari, 2004.
53. Beghini, M., Presicce, F., and Santus, C.,” A method to define profile modification of spur gear and minimize the transmission error,” Proceedings of the Fall Techical Meeting of the American Gear Manufacturers Association, Milwaukee, Wis, USA, Oct. 2004.
54. Marković, K., and Franulović, M.,” Contact Stresses in Gear Teeth Due to Tip Relief Profile Modification,” Eng. Rev., pp. 19-26,2011.
55. Kissling, U.,” Effects of Profile Corrections on Peak-to-Peak Transmission Error,” Gear Technology, pp. 52-61, 2010. https://www.geartechnology.com/issues/0710x/kissling.pdf
56. Lin, H. H., Townsend, D. P., and Oswald, F. B.” Profile Modification to Minimize Spur Gear Dynamic Loading,” NASA-TM-106585, 1988.
57. Vecchiato, D.,” Tooth Contact Analysis of a Misaligned Isostatic Planetary Gear Train,” Mech. Mach. Theory, Vol. 41, pp. 617-631, 2006.
https://doi.org/10.1016/j.mechmachtheory.2005.10.001
58. Hidaka, T., Terauchi, Y. and Dohi, K.,” On the Relation between the Run-Out Errors and the Motion of the Center of Sun Gear In a Stoeckicht Planetary Gear,” Bull. JSME, Vil. 22, pp. 748-754, 1979. https://doi.org/10.1299/jsme1958.22.748
59. Tsai, S.-J., Huang, G.-L. and Ye, S.-Y.,” Tooth Contact Analysis of Planetary Gear Sets with a Floating Sun Gear,” The 2nd IFToMM Asian Conference on Mechanism and Machine Science, Tokyo, Japan, 2012.
60. Tsai, S.-J., Huang, G.-L. and Ye, S.-Y.,” Gear Meshing Analysis of Planetary Gear Sets with a Floating Sun Gear” Mech. Mach. Theory, Vol. 84, pp. 145-163, 2015.
https://doi.org/10.1016/j.mechmachtheory.2014.03.001
61. Ye, S.-Y. and Tsai, S.-J.,” Loaded Tooth Contact Analysis of Power-Split Gear Drives Considering Shaft Deformation and Assembly Errors,” Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, America, 2015.
62. Malhotra, S. K. and Parameswaran, M. A., “Analysis of a Cycloid Speed Reducer,” Mech. Mach. Theory Vol. 18, No. 6, pp. 491-499,1983.
https://doi.org/10.1016/0094-114X(83)90066-6
63. Ishida, T., Hidaka, T., Wang, H., Yamada, H. and Hashimoto,M.,“Bending Stress and Tooth Contact Stress of Cycloid Gear with Thin Rims”, Transactions of JSME, Ser. C, Vol. 62, No. 593, 1996, pp.291-297. https://doi.org/10.1299/kikaic.62.291
64. Blagojević, M., “Analysis of Clearances and Deformations at Cycloid Disc,” Machine Design, Vol. 6, No. 3, pp. 79–84, 2014.
65. Li, X., Li., C., Wang, Y., Chen, B. and Lim, T. C.,” Analysis of a Cycloid Speed Reducer Considering ToothProfile Modification and Clearance-Fit Output Mechanism,” ASME. J. Mech. Des., Vol. 139, No. 3, 033303, 2017. https://doi.org/10.1115/1.4035541
66. Kahraman, A.,” Load Sharing Characteristics of the Planetary Transmissions,” Mech. Mach. Theory Vol. 29, No. 8, pp. 1154-1165,1994.
https://doi.org/10.1016/0094-114X(94)90006-X
67. Ligata, H., Kahraman, A., and Singh, A., "A Closed-Form Planet Load Sharing Formulation for Planetary Gear Sets Using a Translational Analogy." ASME. J. Mech. Des., Vol. 131, No. 2, 021007, 2009. https://doi.org/10.1115/1.3042160
68. Chmurawa, M. and John, A., “FEM in Numerical Analysis of Stress and Displacement Distribution in Planetary Wheel of Cycloidal Gear,” NAA 2000, LNCS 1988, Spring-Verlag Berlin Heidelberg, pp. 772-799, 2000.
https://doi.org/10.1007/3-540-45262-1_91
69. Chmurawa, M. and Lokiec A., “Distribution of Loads in Cycloidal Planetary Gear (Cyclo) Including Modification of Equidistant”, Proceedings of the 16th European ADAMS User Conference, 2001.
70. Blagojević, M., Marjanović, N., Đorđević, Z. and Stojanović, B.,“Stress and Strain State of Single – Stage Cycloidal Speed Reducer,” The 7th International Conference Research and Development of Mechanical Elements and Systems, Zlatibor, Serbia, 2011.
71. Chen, T.-Y., Lee, J.-J. and Hsieh, C.-C., “Force Analysis for the Cycloidal Gear Reducer Using Finite Element Method,” The 3rd IFToMM Asian Conference on Mechanism and Machine Science, July 9–10, 2014, Tianjin, China.
72. Yu, H., Liu, G., Wang, Y., Mao, H., He, K. and Du, R., "The Impact of Gap on Meshing Force in Two-stage Cycloidal Gear Drive," 2017 IEEE International Conference on Information and Automation (ICIA), Macau, 2017, pp. 760-763.
https://doi.org/10.1109/ICInfA.2017.8079006
73. Pham, A. and Ahn, H.,”Efficiency Analysis of a Cycloid Reducer Considering Tolerance,” J. Frict. Wear 38, pp. 490–496 (2017). https://doi.org/10.3103/S1068366617060113
74. Gorla, C., Davoli, P., Rosa, F., Longoni, C., Chiozzi, F., and Samarani, A., “Theoretical and Experimental Analysis of a Cycloidal Speed Reducer.” Journal of Mechanical Design, Vol. 130, Issue 11, 2008. https://doi.org/10.1115/1.2978342
75. Dinner, H.,”Tooth Contact Analysis in Planetary Gears,” EES KISSsoft GmbH, 2010.
76. Börner, J., Kurz, N. And Joachim, F.,” Effective Analysis of Gears with the Program LVR (Stiffness Method),” VDI-Berichte No. 1665, Vol. 2, pp. 721-736, 2002.
77. Harnett M. J.,” The Analysis of Contact Stresses in Rolling Element Bearings,” Journal of Lubrication Technology, ASME, Vol. 101, pp.105-109, 1979.
https://doi.org/10.1115/1.3453270
78. Harnett M. J.,” A general numerical solution for elastic body contact problems Solid Contact and Lubrication,” Symp. Solid Contact and Lubrication, ASME, Vol. 39, pp. 51-66 , 1980.
79. Wu, S. H. and Tsai, S. J.: “Contact stress analysis of skew conical involute gear drives in approximate line contact”, Mechanism and Machine Theory, Volume 44, Issue 9, pp. 1658–1676, 2009.
80. Tsai, S. J. and Yeh, H. Y.,” A Computerized Approach for Loaded Tooth Contact Analysis of Planetary Gear Drives Considering Relevant Deformations,” Mechanism and Machine Theory, Vol. 122, pp. 252-278,
https://doi.org/10.1016/j.mechmachtheory.2017.12.026
81. Tsai, S. J., Huang, C. H., Yeh, H. Y. and Huang, W. J. “ Loaded Tooth Contact Analysis of Cycloid Planetary Gear Drives”, 14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, 25-30 October, 2015.
82. Tsai, S.J., Huang, W.J. and Huang, C.H.: “A Computerized Approach for Load Analysis of Planetary Gear Drives with Epitrochoid-Pin Tooth-pairs”, VDI-Berichte 2255, pp. 307-316, 2015.
83. Huang, C.-H. and Tsai,S.-J.,”A study on loaded tooth contact analysis of a cycloid planetary gear reducer considering friction and bearing roller stiffness,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, JSME , Vol. 11, Issue 6, 2017.
84. Wellauer, E. J. and Seireg, A.”Bending Strength of Gear Teeth by Cantilever-plate Theory,” Journal of Engineering for Industry, Trans, ASME, Vol. 82, pp.213-222, 1960.
85. German Institute for Standardization (DIN), “DIN 3967: System of Gear Fits; Backlash, Tooth Thickness Allowances, Tooth Thickness Tolerances; Principles”,1978.
86. Johnson, K. L.,”Contact mechanics,” Cambrige University Press, 1985.
87. Bodas, A., Kahraman, A.,” Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets,” JSME International Journal Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 47, No. 3, pp. 908-915, 2004. https://doi.org/10.1299/jsmec.47.908
88. Nabtesco RV-E® 產品介紹,民國109年8月24日,取自https://precision.nabtesco.com/tw/products/detail/RV-E
89. Harmonic Drive® CSF-17-100-2UH,民國109年8月24日,取自https://www.harmonicdrive.net/products/gear-units/gear-units/csf-2uh/csf-17-100-2uh
90. 安峻機械有限公司 MARS400小型潛盾機,民國110年1月21日,取自
http://ajm-mars.com/pdview.aspx?key=1&id=20
91. 關天民,「擺線針輪行星傳動中擺線輪最佳修形量的確定方法」,中國機械工程,第13卷第10期811-813頁,2002。
92. 關天民、彭永華、張東生、張錫生、雷蕾,「針擺傳動中”反弓”齒擴的進一步研究」,大連鐵道學院學報,第26卷第4期,17-20頁,2005。
93. 關天民、徐曉瑩、雷蕾,「針擺傳動中弓背齒擴的受力分析」,大連交通大學學報,第32卷第2期,24-32頁,2011。
94. 黃重憲,「具修整齒形擺線傳動器之曲面設計、齒形接觸分析與最佳修整參數設計的研究」,國立成功大學機械工程學系碩士論文,2006。
95. 何衛東、李力行、李欣: “機器人用高精度RV減速器中擺線輪的優化新齒形”, 機械工程學報,第36期第3卷51-55頁,2000。
96. 吳坤祐,「電腦輔助 RV 減速機之傳遞運動誤差及背隙分析」,國立台灣大學機械工程學系研究所碩士論文,2017。
97. 黃薇臻,「考慮主要誤差下具修整齒廓之擺線行星齒輪傳動機構之接觸特性」,國立中央大學機械工程學系研究所碩士論文,2016。
98. 林灣松,「二階擺線減速機之運動誤差分析與設計」, 國立台灣大學機械工程學系碩士論文,2013。
99. 韓林山、沈允文、董海軍、竹振旭、劉繼岩、戚厚軍,「2K-V型傳動裝置製造誤差對傳動精度的影響」,機械科學與技術,第26卷第9期,2007。
100. 楊玉虎、張潔、許力新,「RV傳動機構精度分析」,天津大學學報(自然科學與工程技術版),第46卷第7期,2013。
101. 葉湘羭,「具行星齒輪浮動之行星齒輪機構靜態負載分析」,國立中央大學機械工程學系碩士論文,2011。
102. 葉湘羭,「具齒面修整之行星齒輪組受載齒面接觸分析」,國立中央大學機械工程學系博士論文,2016。
103. 董向陽,鄧建一、陳建平,「RV 傳動機構的受力分析」,上海交通大學學報,第30卷第5期,第65頁至第70頁,1996。
104. 曾柏桑,「以有限元素分析擺線減速機之受力表現」,國立台灣大學機械工程學系碩士論文,2014。
105. 徐鼎翔,「具修形齒形擺線減速機接觸力分析與有限元素模擬」,國立台灣大學機械工程學系碩士論文,2016。
106. 張靖,「擺線行星齒輪傳動機構之動態負載分析」,國立中央大學機械工程學系碩士論文,2017。
107. 吳思漢,「近似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究」,國立中央大學機械工程學系博士論文,2009。
108. 蔡錫錚、黃勁儫、葉湘羭、黃薇臻,「擺線行星齒輪齒面受載接觸分析」, 第十七屆全國機構與機器設計學術研討會論文集,台灣、台中:中華民國機構與機器原理學會,民國103年,C-004。
109. 傳仕精密機械,「TRANSCYKO®低背隙擺線減速機TLB」,民國109年8月24日,取自https://transcyko.com.tw/wp-content/uploads/2020/04/TLB-series-catalogue_2017.pdf |