博碩士論文 107328018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.191.189.211
姓名 蔡安傑(AN-JIE TSAI)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
(An Experimental Investigation of Syngas Solid Oxide Fuel Cell with the Addition of CO2: Cell Performance and Stability Measurements)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對合成氣固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)添加二氧化碳,以觀察二氧化碳是否可以抑制合成氣(35%H2+65%CO)所產生的碳沉積。碳沉積的發生源自於一氧化碳所進行的歧化反應(Boudouard Reaction),以及氫氣與一氧化碳進行的還原反應。當合成氣SOFC在較低溫度(T = 500~700oC)操作時,會提高歧化反應發生的機率,導致碳容易形成於電極表面,使陽極阻塞進而影響電化學反應和使電池性能劣化。本研究在陽極合成氣燃料中所添加之二氧化碳,可提高一氧化碳之歧化逆反應發生的次數,達到抑制碳沉積的效果。我們透過已建立之高壓高溫SOFC測試平台,使用鈕扣型陽極支撐電池(Anode-Supported Cell; 530-μm-Ni-YSZ/3-μm-YSZ/15-μm-LSC-GDC),在不同操作溫度的條件下,於陽極端使用三種燃料:(1) H2 (200 sccm);(2) H2/CO (70/130 sccm);(3) H2/CO/CO2 (35/65/100 sccm),並量測其電池性能、電化學阻抗頻譜。另外,在T = 700oC時使用合成氣、合成氣添加氮氣與合成氣添加二氧化碳進行穩定性測試。結果顯示,電池因碳沉積開始劣化之時間,會隨著添加氮氣和二氧化碳而延長。明確地說,使用合成氣、合成氣添加氮氣與合成氣添加二氧化碳,其相對應之電池性能嚴重劣化前的操作時間,分別為3小時、7小時與25小時,證實添加二氧化碳是個有助延長穩定性的方法。從合成氣與合成氣添加二氧化碳之掃描電子顯微鏡(Scanning Electron Microscope)可以發現,在添加二氧化碳的電池陽極未觀察到明顯的碳沉積,而能量散射X射線譜(Energy Dispersive X-Ray)分析結果顯示,在電池陽極表面碳原子比例(Atomic Ratio, At.%)分別為19.2%(合成氣)與11.5%(合成氣添加二氧化碳)。本論文有兩個結論:(1)當在較低溫度操作時(T ≤ 700oC),在陽極合成氣燃料中添加二氧化碳可抑制碳沉積的形成;(2)雖然添加二氧化碳可抑制碳的形成,但少量的碳沉積仍會造成陽極表面鎳微結構的損壞,顯示以鎳基為陽極觸媒之SOFC,若使用合成氣為燃料將無法以添加二氧化碳來完全消除碳沉積。以上實驗結果,應對了解合成氣SOFC之碳沉積問題有所助益。
摘要(英) In this thesis, carbon dioxide is doped into a syngas solid oxide fuel cell (SOFC) to investigate whether carbon dioxide can inhibit the carbon deposition produced by syngas (35%H2+65%CO). Carbon deposition originates from the Boudouard reaction of carbon monoxide and the reduction of hydrogen and carbon monoxide. When the syngas SOFC is operated at lower temperature (T = 500~700oC), the probability of the occurrence of Boudouard reaction is increased, causing carbon to form easily on the electrode surface, blocking the anode and affecting the electrochemical reaction, and resulting in the cell performance degradation. This study adds carbon dioxide into the anode syngas fuel to increase the occurrence probability of the reverse Boudouard reaction of carbon dioxide in attempt to inhibit carbon deposition. The performance and electrochemical impedance spectra of a button-type anode supported cell (Anode-Supported Cell; 530-μm-Ni-YSZ/3-μm-YSZ/15-μm-LSC-GDC) are measured using an established high-pressure and high-temperature test platform under different operating temperature conditions. Three fuels are used in the anode: (1) H2 (200 sccm); (2) H2/CO (70/130 sccm); (3) H2/CO/CO2 (35/65/100 sccm). In addition, the stability tests are conducted using syngas, syngas with nitrogen, and syngas with carbon dioxide at T = 700oC. Results show that the deterioration time of cell performance due to carbon deposition can be extended by adding nitrogen and carbon dioxide. Specifically, using syngas, syngas with nitrogen, and syngas with carbon dioxide, the corresponding operating times before the occurrence of severe degradation of cell performance are 3 hours, 7 hours and 25 hours, respectively. This confirms that the addition of carbon dioxide is a beneficial way to extend the cell stability. From the SEM (Scanning Electron Microscope) images of using syngas and syngas with carbon dioxide, no significant carbon deposition is observed on the anode of the cell with the addition of carbon dioxide. However, the EDX (Energy Dispersive X-Ray) analysis shows that the atomic ratio (At.%) of carbon on the anode surface of the cell is 19.2% (syngas) and 11.5% (syngas with carbon dioxide), respectively. There are two conclusions: (1) Adding carbon dioxide to the anode syngas fuel is a useful method to inhibit carbon deposition, when the operating temperature of syngas SOFC is 700oC or lower. (2) Although the addition of carbon dioxide can inhibit the formation of carbon, even a small amount of carbon deposition can still cause some damage to the nickel microstructures, resulting in the degradation of cell performance. This suggests that the carbon deposition of syngas SOFC using the nickel-based anode cannot be completely eliminated by adding carbon dioxide. These aforesaid experimental results should be useful to the understanding of carbon deposition problem of syngas SOFC.
關鍵字(中) ★ 合成氣固態氧化物燃料電池
★ 陽極支撐電池
★ 電化學阻抗頻譜
★ 穩定性
★ 碳沉積
關鍵字(英) ★ Syngas solid oxide fuel cell
★ ASC
★ electrochemical impedance spectroscopy
★ stability test
★ carbon deposition
論文目次 摘要……………………………………………………………….………i
Abstract…………………………...……………………………………..iii
致謝………………………………………………………………………v
目錄………………………………………………………………..…….vi
圖表目錄……………………………………………………………….viii
符號說明…………………………………………………………………x
第一章 前言……………………………………………………..………1
1.1 研究動機……………………………………...……………1
1.2 問題所在……………………………………………...……3
1.3 解決方法………………………………………………..….4
1.4 論文綱要…………………………………………..……….5
第二章 文獻回顧………………………………………….…………….6
2.1 SOFC基本介紹………………………………………...….6
2.1.1 基本元件…………………………………………….6
2.1.2 SOFC種類介紹……………………………...………7
2.2 SOFC運作原理……………………………………………9
2.3 SOFC之極化現象………………………………...………11
2.3.1 極化現象簡介…………………………………..…..11
2.3.2 活化極化………………………………………..….12
2.3.3 濃度極化………………………………….………..13
2.3.4 歐姆極化…………………………………….……..14
2.4 電化學阻抗頻譜與等效電路模組……………...………..15
2.5 使用合成氣SOFC之相關文獻…………………….……20
2.5.1 性能與碳沉積相關文獻………………………...…20
2.5.2 抑制碳沉積相關文獻………………………….…..24
第三章 實驗設備與量測方法…………………………………………30
3.1 加壓型SOFC測試平台……………………………...…..30
3.2 實驗流程與量測操作參數設定……………………..…….35
第四章 結果與討論……………………………………………………38
4.1 合成氣SOFC性能與阻抗頻譜之溫度效應….................38
4.2 合成氣SOFC性能與阻抗頻譜之燃料效應……….……43
4.3 合成氣添加二氧化碳SOFC之穩定性測試……….……46
第五章 結論與未來工作……………………………..………………..51
5.1 結論………………………………………………...……..51
5.2 未來工作………………………………………………….52
參考文獻………………………………………………………………..54
參考文獻 [1] A. Choudhury, H. Chandra, A. Arora, Application of solid oxide fuel cell technology for power generation - A review, Renewable and Sustainable Energy Reviews 20 (2013) 430-442 (https://doi.org/10.1016/j.rser.2012.11.031).
[2] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng, A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte, Journal of Power Sources 164 (2007) 86-89 (https://doi.org/10.1016/j.jpowsour.2006.09.093).
[3] M.J. Taherzadeh, K. Bolton, J. Wong, A. Pandey, Sustainable Resource Recovery and Zero Waste Approaches, Elsevier Science, 2019.
[4] C.C. Liu, S.S. Shy, C.W. Chiu, M.W. Peng, H.J. Chung, Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment, International Journal of Hydrogen Energy 36 (2011) 8595-8603 (https://doi.org/10.1016/j.ijhydene.2011.04.087).
[5] T. Chen, W.G. Wang, H. Miao, T. Li, C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, Journal of Power Sources 196 (2011) 2461-2468 (https://doi.org/10.1016/j.jpowsour.2010.11.095).
[6] 張華屹,合成氣固態氧化物燃料電池性能與穩定性量測,國立中央大學碩士論文,桃園,台灣,2017。
[7] R.J. Kee, H. Zhu, A.M. Sukeshini, G.S. Jackson, Solid oxide fuel cells: operating principles, current challenges, and the role of syngas, Combustion Science and Technology 180 (2008) 1207-1244 (https://doi.org/10.1080/00102200801963458).
[8] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量流率效應,國立中央大學碩士論文,桃園,台灣,2012。
[9] 謝易達,加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析,國立中央大學碩士論文,桃園,台灣,2013。
[10] F. Ramadhani, M.A. Hussain, H. Mokhlis, S. Hajimolana, Optimization strategies for solid oxide fuel cell (SOFC) application: A literature survey, Renewable and Sustainable Energy Reviews 76 (2017) 460-484
(https://doi.org/10.1016/j.rser.2017.03.052).
[11] Y. Kobayashi, K. Tomida, M. Nishiura, K. Hiwatashi, H. Kishizawa, K. Takemobu, Development of next-generation large-scale SOFC toward realization of a hydrogen society, Mitsubishi Heavy Industries Technical Review 52 (2015) 111-116 (https://doi.org/10.1299/jsmemecj.2015._S0830303-).
[12] R.O. Hayre, S.W. Cha , W. Colella, F.B. Prinz, Fuel Cell Fundamentals, 2nd Ed. John Wiley & Sons Inc., New York, 2009.
[13] N.T.Q. Nguyen, H.H. Yoon, Preparation and evaluation of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells, Journal of Power Sources 231 (2013) 213-218 (https://doi.org/10.1016/j.jpowsour.2013.01.011).
[14] M. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Rational SOFC material design: new advances and tools, Materials Today 14 (2011) 534-546 (https://doi.org/10.1016/S1369-7021(11)70279-6).
[15] Y.W. Sin, K. Galloway, B. Roy, N.M. Sammes, J.H. Song, T. Suzuki, M. Awano, The properties and performance of micro-tubular (less than 2.0 mm O.D.) anode suported solid oxide fuel cell (SOFC), International Journal of Hydrogen Energy 36 (2011) 1882-1889 (https://doi.org/10.1016/j.ijhydene.2009.12.167).
[16] A. Mineshige, K. Fukushima, K. Tsukada, M. Kobune, T. Yazawa, K. Kikuchi, M. Inaba, Z. Ogumi, Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique, Solid State Ionics 175 (2004) 483-485 (https://doi.org/10.1016/j.ssi.2004.03.050).
[17] D. Cui, L. Liu, Y. Dong, M. Cheng, Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling, Journal of Power Sources 174 (2007) 246-254
(https://doi.org/10.1016/j.jpowsour.2007.08.094).
[18] B. Stoeckl, V. Subotić, D. Reichholf, H. Schroettner, C. Hochenauer, Extensive analysis of large planar SOFC: Operation with humidified methane and carbon monoxide to examine carbon deposition based degradation, Electrochimica Acta 256 (2017) 325-336 (https://doi.org/10.1016/j.electacta.2017.09.026).
[19] M.M. Hussain, X. Li, I. Dincer, A general electrolyte–electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, Journal of Power Sources 189 (2009) 916-928
(https://doi.org/10.1016/j.jpowsour.2008.12.121).
[20] D. Sarantaridis, A. Atkinson, Redox cycling of Ni-based solid oxide fuel cell anodes: A review, Fuel Cells 7 (2007) 246-258
(https://doi.org/10.1002/fuce.200600028).
[21] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, Journal of Power Sources 177 (2008) 254-261 (https://doi.org/10.1016/j.jpowsour.2007.11.079).
[22] W. Vielstich, A. Lamm, H.A. Gasteiger, H. Yokokawa, Handbook of Fuel Cells, John Wiley & Sons Inc., 2010.
[23] 李信宏,棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,國立中央大學碩士論文,桃園,台灣,2010。
[24] S.H. Chan, K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, Journal of Power Sources 93 (2001) 130-140 (https://doi.org/10.1016/S0378-7753(00)00556-5).
[25] M. Ni, M.K. Leung, D.Y. Leung, Parametric study of solid oxide fuel cell performance, Energy Conversion and Management 48 (2007) 1525-1535 (https://doi.org/10.1016/j.enconman.2006.11.016).
[26] G.J. Offer, P. Shearing, J.I. Golbert, D.J.L. Brett, A. Atkinson, N.P. Brandon, Using electrochemical impedance spectroscopy to compensate for errors when measuring polarisation curves during three-electrode measurements of solid oxide fuel cell electrodes, Electrochimica Acta 53 (2008) 7614-7621 (https://doi.org/10.1016/j.electacta.2008.04.001).
[27] D.D. Macdonald, Reflections on the history of electrochemical impedance spectroscopy, Electrochimica Acta 51 (2006) 1376-1388
(https://doi.org/10.1016/j.electacta.2005.02.107).
[28] Q.A. Huang, R. Hui, B.W. Wang, H.J. Zhang, A review of AC impedance modeling and validation in SOFC diagnosis, Electrochimica Acta 52 (2007) 8144-8164 (https://doi.org/10.1016/j.electacta.2007.05.071).
[29] R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y.L. Liu, P.V. Hendriksen, Detailed characterization of anode-supported SOFCs by impedance spectroscopy, Journal of the Electrochemical Society 154 (2007) B371-B378 (https://iopscience.iop.org/article/10.1149/200507.0524PV).
[30] V.A. Restrepo, J.M. Hill, Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds, Journal of Power Sources 195 (2010) 1344-1351
(https://doi.org/10.1016/j.jpowsour.2009.09.014).
[31] J. Xizo, Y. Xie, J. Liu, M. Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, Journal of Power Sources 268 (2014) 508-516 (https://doi.org/10.1016/j.jpowsour.2014.06.082).
[32] C. Li, Y. Shi, N. Cai, Elementary reaction kinetic model of an anode-supported solid oxide fuel cell fueled with syngas, Journal of Power Sources 195 (2010) 2266-2282 (https://doi.org/10.1016/j.jpowsour.2009.10.051).
[33] B. Stoeckl, V. Subotić, M. Preininger, H. Schroettner, C. Hochenauer, SOFC operation with carbon oxides: Experimental analysis of performance and degradation, Electrochimica Acta 275 (2018) 256-264
(https://doi.org/10.1016/j.electacta.2018.04.036).
[34] L.Z. Bian, Z.Y. Chen, L.J. Wang, F.S. Li, K.C. Chou, Electrochemical performance and carbon deposition of anode-supported solid oxide fuel cell exposed to H2-CO fuels, International Journal of Hydrogen Energy 42 (2017) 14246-14252 (https://doi.org/10.1016/j.ijhydene.2016.08.214).
[35] H. Miao, G. Liu, T. Chen, C. He, J. Peng, S. Ye, W.G. Wang, Behavior of anode-supported SOFCs under simulated syngases, Journal of Solid State Electrochemistry 19 (2014) 639-646
(https://link.springer.com/article/10.1007/s10008-014-2640-7).
[36] W. Wang, R. Ran, C. Su, Y.M. Guo, D. Farrusseng, Z.P. Shao, Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes, Journal of Power Sources 240 (2013) 232-240 (https://doi.org/10.1016/j.jpowsour.2013.04.014).
[37] R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M.W. Fowler, P.L. Douglas, S. Chewathanakup, H. Mahaudom, Experimental and modeling study of solid oxide fuel cell operating with syngas fuel, Journal of Power Sources 161 (2006) 308-322
(https://doi.org/10.1016/j.jpowsour.2006.03.080).
[38] X.F. Ye, S.R. Wang, J. Zhou, F.R. Zeng, H.W. Nie, T.L. Wen, Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H2-CO syngas fuels, Journal of Power Sources 195 (2010) 7264-7267 (https://doi.org/10.1016/j.jpowsour.2010.04.016).
[39] 周政憲, 平板式加壓型合成氣固態氧化物燃料電池實驗研究,國立中央大學碩士論文,桃園,台灣,2018。
[40] P.C. Wu, S.S. Shy, Cell performance, impedance, and various resistances measurements of an anode-supported button cell using a new pressurized solid oxide fuel cell rig at 1-5 atm and 750-850°C, Journal of Power Sources 362 (2017) 105-114 (https://doi.org/10.1016/j.jpowsour.2017.07.030).
[41] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, Journal of Power Sources 171 (2007) 169-178 (https://doi.org/10.1016/j.jpowsour.2006.12.029).
[42] J. Nielsen, M. Mogensen, SOFC LSM: YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ionics 189 (2011) 74-81 (https://doi.org/10.1016/j.ssi.2011.02.019).
[43] Z. Jaworski, B. Zakrzewska, P. Pianko-Oprych, On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: updating for nanotubes, Reviews in Chemical Engineering 33 (2017) 217-235
(https://doi.org/10.1515/revce-2016-0022).
指導教授 施聖洋(Shy, Shenqyang) 審核日期 2021-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明