摘要(英) |
Municipal Solid Waste Management (MSWM) is constantly facing serious challenges in the world especially in the developing countries. There are major problems in MSWM in Haiti: 1) inadequate municipal solid waste (MSW) collection services and schemes for cities; 2) limited reuse and recycling of MSW; 3) improper MSW disposal. Petit Goave, a city of Haiti which links 4 departments of the country is not exempt from such problems. Therefore, it was judged important and needful to find and suggest some solutions regarding waste management for this city.
The clear ambition of this study is to collect and assess the composting technology that is reliable and practicable to the city. Then to see how composting could help solid waste management for better sanitation of the city. The major objective is to study a technique for composting of municipal solid waste which is well-suited for the solid waste generation, climate, and socio-economic conditions of Petit Goave City. To achieve this, the following methodology has been adopted. First, review and study the materials through journal articles, scientific papers and reports, and other publications available on sustainable solid waste management suitable for Haiti. Then, to collect the data for the study, we had an observation of situation in the study area and realized a survey. Afterwards the existing solid waste condition of Petit-Goave city was collected and analyzed according to the study requirement. This study evaluates the characteristics of the site where the composting system will be implanted, and the environmental, social and economic impact of implementing the proposed strategy are also assessed. Each of the aspects used quantitative, wherever it was possible, or qualitative assessments.
As results it is found that 57% of the municipal solid waste of Petit-Goave consists of biodegradable materials, and the production of waste per capita per day is around 0.47 to 0.80 kg/ca-day (DATIP, 2012). From 2020 to 2030, for proper treatment of MSW, the municipal authorities must ensure the management of approximately 50,000 to 80,000 tons of waste in the city. According to the estimation, the solid waste that could be able to be transformed into compost will be between 28,500 tons/year to 45,000 tons/year. But it is considered in this study the composting system will have a design capacity of 18 000 tons/ year, so 22.63% of biodegradable materials will go to the composting site, the rest (34.37%) will serve to feed livestock. The city hall, the neighborhood committees, the households and certain non-governmental international organizations (NGOs) are the principal MSW management actors at Petit-Goave. Waste management in Petit-Goâve is financed by the municipal budget at 30% and the central government at70%.
The study found that, considering economic and technical factors, the aerobic composting process with “turned-windrow composting” is more suitable for Petit-Goave City in developing composting technology. The turned-windrow composting is to place organic solid waste into several rows of long piles and turn these piles periodically by either manual or mechanical way to mix and enhance air passing the composting materials. The most appropriate site for composting system is at 5 kilometers from the downtown of Petit-Goave. The most likely to happen secondary pollution is odor and dust of air pollution occurred during the operation of turned-windrow composting. This study proposed some operation management approaches to solve the problems. The operating management approach includes the emission minimization of methane gas and nitrogen oxides from composting piles by maintaining proper C/N ratio, sufficient air, moisture content, and pH control of composting piles. A board fence or wind fence will be constructed on site to control the dust and air currents. |
參考文獻 |
1. International Solid Waste Association (ISWA), United Nations Environment Programme (UNEP), Global Waste Management Outlook. Summary for Decision-Makers, pp 1-8
2. Ana Pires. Graça Martinho. Susana Rodrigues. Maria Isabel Gomes, Sustainable Solid Waste Collection and Management, Springer, 2019.
3. US Army Corp of Engineers District, Mobile Alabama and US Army Corps of Engineers Topographic Engineering Center, Water resources assessment of Haiti, Alexandria, Virginia, 1999.
4. https://www.mtptc.gouv.ht
5. U. de Bertoldi-Schnappinger, Waste Management Series, “Design of Composting Plants, chapter 6”, Volume 8, Pages 89-117, 2007
6. https://import-export.societegenerale.fr/en/country/haiti/presentation-geography
7. Samuel Booth, Kip Funk, Scott Haase, Haiti Waste-to-Energy Opportunity Analysis, NREL, November 2010.
8. Oscar Rodriguez, Establishing a Municipal Recovery Facility in Tegucigalpa City, Honduras, June 2010
9. Amy Nasser, Improvement of Solid Waste Management and Design of Biogas Recovery system in Tegucigalpa, Honduras, June 2008
10. JOSÉPHINE PEIGNÉ and PHILIPPE GIRARDIN, Environmental Impacts of Farm-Scale Composting Practices., September 12, 2003
11. Joaneson LACOUR, PhD, Politique nationale des déchets solides en Haiti; Table Régionale de coordination pour le Grand Sud; Port-Salut, May 26, 2016.
12. Daniel Hoornweg and Perinaz Bhada-Tata, Urban development series knowledge papers, “WHAT A WASTE: A Global Review of Solid Waste Management”, No. 15, March 2012
13. Wendell P. Woodring, John S. Brown & Wilbur S Burbank, Geology of the Republic of Haiti, Port-au-Prince, 1924
14. Haug, Roger Tim, Compost Engineering Principles and Practices, Ann Arbor Science Publishers, First Edition 1994
15. The Composting Council, Compost Facility Operating Guide, Alexandria, Virginia, 1994
16. Cooperative Extension Service, On Farm Composting Handbook, NRAES-54, Ithaca, New York, 1992.
17. O’Leary, Philip, Patrick Walsh and Aga Razvl, Solid Waste Composting, Table 1: Approximate C:N ratios of some organic materials,1989-90.
18. George Tchobanoglous, Hilary Theisen and Samuel A. Vigil, Integrated Solid Waste Management, Mc Graw Hill, International Editions, 1993
19. World Bank Group, Haiti: towards a new narrative systematic country diagnostic, May 2015
20. Ministry of environment, Haiti National Report, “Integrating the management of watersheds and coastal areas in Haiti”, September 2001
21. Anie Bras, Chantal Berdier, Evens Emmanuel, M. Zimmerman, Problems and current practices of solid waste management in developing countries – Case study from Port-au-Prince (Haiti), 2009
22. David Border Composting Consultancy, Processes and Plant for Waste Composting and other Aerobic Treatment, 2002
23. Adamson et al., The Geological Society of America Special Paper 520, “Summary of groundwater resources in Haiti”, 2016
24. Rajkumar Joshi and Sirajuddin Ahmed, Environmental chemistry, pollution & waste management |review article, “Status and challenges of municipal solid waste management in India: A review” 2016
25. Cadena, E. et al. “Environmental impact of two aerobic composting technologies using life cy-cle assessment” in International journal of life cycle assessment (Springer), vol.14, issue 5, pp. 401-410, July 2009.
26. A. K. Pathak, M. M. Singh and V. Kumar, International Journal of Current Research, “Composting of municipal solid waste: a sustainable waste management technique in indian cities – a review”, Vol. 3, Issue, 12, pp.339-346, December, 2011
27. Charlotte Brown, Mark Milke, Erica Seville, International Journal of Integrated Waste Management, Science and Technology, “Disaster Waste Management: a Review Article”, January 2011
28. Esther Vanlalmawii, Mamta Awasthi, International Journal of Advances in Science Engineering and Technology, “Municipal solid waste composting - a review” Vol-4, Iss-2, Spl. Issue-1 Apr.-2016
29. Sven Erik Jorgensen, Encyclopedia of Environmental Management, “Acaracides-Energy conversion”, Vol. 1, 2013
30. Vermont Agency of Natural Resources-Department of Environmental Conservation. Turned Windrow Composting. Site identification and design considerations
31. Mitch Renkow, Charles Safley, and Jeff Chaffin, A Cost Analysis of Municipal Yard Waste Composting, ARE Report No. 6, December 1993
32. C. M. Mehta and Kanak Sirari, Comparative study of aerobic and anaerobic composting for better understanding of organic waste management: A mini review , Plant Archives Vol. 18 No. 1, pp. 44-48, 2018
33. https://www.epa.gov/sustainable-management-food/types-composting-and-understanding-process
34. Joséphine Peigné & Philippe Girardin, Environmental Impacts of Farm-Scale Composting Practices, March 2004
35. Fischer K., Environmental Impact of Composting Plants, The Science of Composting, Springer, 1996
36. R. Spencer, C.M. Alix, Dust management, mitigation at composting facilities, March 2006 |