參考文獻 |
[1] C. Y. Peng, C. Y. Hsu, Chemical Looping Technology – Opportunity and Challenge of CO2 Capture, Combustion Quarterly 21 (2012) 75-87.
[2] J. Wu, B. Jiang, J. Chen, and Y. Yang, Multi-scale study of particle flow in silos, Adv. Powder Technol. 20 (2009) 62-73.
[3] S. S. Hsiau, J. Smid, H. H. Tsai, J. T. Kuo, C. S. Chou, Flow patterns and velocity fields of granules in Dorfan Impingo filters for gas cleanup, Chem. Eng. Sci. 55 (2000) 4481-4494.
[4] S. S. Hsiau, J. Smid, S. A. Tsai, C. C. Tzeng, Y. J. Yu, Flow of filter granules in moving granular beds with louvers and sublouvers, Chem. Eng. Process 47 (2008) 2084-2097.
[5] C. S. Chou, W. F. Lo, J. Smid, J. T. Kuo, and S. S. Hsiau, The flow patterns and stresses on the wall in a symmetric louvered-wall moving granular filter bed, Powder Technol. 131 (2003) 166-184.
[6] C. S. Chou, and T. L. Yang, Flow patterns and wall stresses in a moving granular filter bed with a curved symmetric louvered wall, Adv. Powder Technol. 5 (2005) 451-471.
[7] M. Danczyk, T. Meaclem, M. Mehdizad, D. Clarke, P. Galvosas, L. Fullard, D. Holland, Influence of contact parameters on Discrete Element method (DEM) simulations of flow from a hopper: Comparison with magnetic resonance imaging (MRI) measurements, Powder Technol. 372 (2020) 671-684.
[8] A. E. Berg, M. G. Christiansen, B. V. Balakin, P. Kosinski, Investigation of dust dispersion in a modified Hartmann tube using positron emission particle tracking and simulations, J. Loss Prevent Proc. (2018).
[9] T. Börzsönyi, E. Somfai, B. Szabó, S. Wegner, P. Mier, G. Rose, R. Stannarius, Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment, New J. Phys. 18 (2016) 093017.
[10] L. A. Fullard, C. E. Davies, A. C. Neather, E. C. P. Breard, A. J. R. Godfrey, and G. Lube, Testing steady and transient velocity scalings in a silo, Adv. Powder Technol. 29 (2018) 310-318.
[11] M. C. Garcia, H. J. Feise, S. Strege, A. Kwade, Segregation in heaps and silos: Comparison between experiment, simulation and continuum model, Powder Technol. 293 (2016) 26-36.
[12] J. C. Mathews, W. Wu, Model tests of silo discharge in a geotechnical centrifuge, Powder Technol. 293(2016) 3-14.
[13] C. Slominski, M. Niedostatkiewicz,J. Tejchman, Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow, Powder Technol. 173 (2007) 1-18.
[14] J. Song, H. Yang, R. Li, Q. Chen, Y.J. Zhang, Y.J. Wang, P. Kong, Improved PTV measurement based on Voronoi matching used in hopper flow, Powder Technol, (2019) 172-182.
[15] R. O. Uñac, A. M. Vidales, O. A. Benegas, I. Ippolito, Experimental study of discharge rate fluctuations in a silo with different hopper geometries, Powder Technol. 225 (2012) 214-220.
[16] P. Tu, V. Vimonsatit, J. Li, Silo quake response spectrum of iron ore train load out bin, Adv. Powder Technol. 29 (2018) 2275-2784.
[17] N. Engblom, H. Saxén, R. Zevenhoven, H. Nylander, G. G. Enstad, Effects of process parameters and hopper angle on segregation of cohesive ternary powder mixtures in a small scale cylindrical silo, Adv. Powder Technol. 23 (2012) 566-579.
[18] X. Wang, C. Liang, X. Guo, Y. Chen, D. Liu, J. Ma, X. Chen,H. An, Experimental study on the dynamic characteristics of wall normal stresses during silo discharge, Powder Technol. 363 (2020) 509-518.
[19] M. Wójcik, M. Sondej, K. Rejowski, J. Tejchman, Full-scale experiments on wheat flow in steel silo composed of corrugated walls and columns, Powder Technol. 311 (2017) 537-555.
[20] Y. Chen, C. Liang, X. Wang, X. Guo, X. Chen, D. Liu, Static Pressure Distribution Characteristics of Powders Stored in Silos, Chem. Eng. Res. Des. 154 (2020) 1-10.
[21] A. Couto, A. Ruiz, P. J. Aguado, Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge. Comparison with Eurocode 1 part 4, Powder Technol. 237 (2013) 450-467.
[22] J. Ha ̈rtl, J. Y. Ooi, J. M. Rotter, M. Wojcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des. 86 (2008) 370-378.
[23] M. Wójcik, J. Tejchman, G.G. Enstad, Confined granular flow in silos with inserts — Full-scale experiments, Powder Technol. 222 (2012) 15-36.
[24] H. Hammadeh, F. Askifi, A. Ubysz, M. Maj, A. Zeno, Effect of using insert on the flow pressure in cylindrical silo, Studia Geotech. et Mech., 41 (2019) (177-183).
[25] W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, B. C. Hancock, Predicting the flow mode from hoppers using the discrete element method, Powder Technol. 195 (2009) 1-10.
[26] Y. Zhang, Y. Wang, P. Jia, Improving the Delaunay tessellation particle tracking algorithm in the three-dimensional field, Meas.49 (2014) 1-14.
[27] X. Song, F. Yamamoto, M. Iguchi, Y. Murai, A new tracking algorithm of PIV and removal of spurious vectors using Delaunay tessellation, Exp. Fluids 26 (1999) 371-380.
[28] M. Ishikawa, Y. Murai, A. Wada, M. lguchi, K. Okamoto, F. Yamamoto, A novel algorithm for particle tracking velocimetry using the velocity gradient tensor, Exp. Fluids 29 (2000) 519-531.
[29] H. Capart, D. L. Young, Y. Zech, Voronoï imaging methods for the measurement of granular flows, Exp. Fluids 32 (2002) 121-135.
[30] J. Li, P. A Langston, C. Webb, T. Dyakowski, Flow of Sphero-disc particles in rectangular hoppers—a DEM and experimenta comparison in 3D, Chem. Eng. Sci. 59 (2004) 5917-5929.
[31] P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47-65.
[32] S.C. Yang, S.S. Hsiau, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technol. 120 (2001) 244-255.
[33] R. Kobyłka, M. Molenda, DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction, Powder Technol. 256 (2014) 210-216.
[34] R. Kobyłka, M. Molenda, J. Horabik, DEM simulation of the pressure distribution and flow pattern in a model grain silo with an annular segment attached to the wall, Biosyst . Eng. 193 (2020) 75-89.
[35] 郭庭君, 「以離散元素法電腦模擬探討顆粒體在不同置入物儲槽中的傳輸性質與內部性質」,國立中央大學,碩士論文,民國109年。
[36] R. D. Keane, R. J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res. 49 (1992) 191-215.
[37] L. Sarno, A. Carravetta , Y. C. Tai, R. Martino, M. N. Papa, C. Y. Kuo, Measuring thevelocity fields of granular flows – Employment of a multi-pass two-dimensional particleimage velocimetry (2D-PIV) approach, Adv. Powder Technol. 29 (2018) 3107-3123. |