博碩士論文 107323001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.144.224.37
姓名 林家琦(Jia-Chyi Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以物理實驗探討顆粒體在不同置入物儲槽中的傳輸性質
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-31以後開放)
摘要(中) 本研究採用儲槽循環卸載實驗探討顆粒體在不同開口尺寸的七種置入物儲槽中的流動行為,此七種置入物分別為無置入物、倒圓錐型、圓片型、圓柱型、球型、圓錐中空型與圓柱中空型,提出擬三維儲槽循環卸載實驗模擬顆粒體在實際三維儲槽中的流動行為,並進一步分析置入物對儲槽中顆粒流傳輸性質的影響,實驗用顆粒為球形白色ABS 樹脂顆粒體,同時採用 PIV 與 PTV 方法量測顆粒體的速度分佈,並比較兩者量測結果,研究結果顯示:(1)整體上 PIV 與 PTV 兩種量測方法求得的速度分析結果趨近一致,然而兩者計算方法的不同,在儲槽出口處以及邊壁處有較大的誤差,仍需進一步探討。(2)15cm 開口尺寸與 10cm 開口尺寸儲槽中,兩種影像量測技術皆顯示倒圓錐型、圓片型、圓柱型與球型置入物呈現較為均勻的垂直速度分佈,圓柱中空型置入物儲槽中
置入物內側顆粒體的垂直速度較外側快很多,呈現極不均勻的垂直速度分佈。(3)與無置入物儲槽相比,15cm 開口尺寸儲槽中,倒圓錐型、圓片型、圓柱型與球型置入物使儲槽整體呈現較小的粒子溫度分佈,有較大區域的均勻流場,而 10cm 開口尺寸儲槽中,倒圓錐與圓片型使儲槽整體呈現較小的粒子溫度分佈。(4)15cm 開口尺寸儲槽中,無置入物型、倒圓錐型、圓片型、圓柱型、球型與圓錐中空型置入物儲槽的垂直擾動速度分佈皆近似於馬克斯威爾分佈,擾動速度較小,圓柱中空型置入物儲槽的垂直擾動速度分佈較為寬廣呈現 M 型分佈,代表其垂直速度極為不均變化較大,10cm 開口尺寸儲槽中,倒圓錐型置入物的垂直擾動速度近似馬克斯威爾分佈,圓片型、圓柱型、球型與圓錐中空型置入物儲槽的垂直擾動速度分佈則向右偏移,圓柱中空型置入物儲槽的垂直擾動速度分佈仍然較為寬廣,分佈較為不均。
摘要(英) The purpose of this study is to investigate the flow behavior of granular materials in cylindrical silos with different opening sizes and seven different inserts by experiment. The orifice size of silos were 10cm and 15cm respectively. These inserts include conical insert, disk insert, solid cylinder insert, sphere insert, BINSERT and hollow cylinder insert. Quasi-three-dimensional silo is proposed to mimc the flow behavior of granular materials in the three-dimensional silo. Both Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) methods were used to measure the velocity fields for the granular flow, and the corresponding results were compared and discussed. Furthermore, the effect of insert geometry on transport properties of the granular flow in the silo is analyzed. Key findings are highlighted below: (1) Generally, the velocity profiles for the granular flow obtained by the PIV and PTV measurement methods are quite consistent. However, there are some discrepancies at the exit and the side wall of silos, which needs to be further investigated; (2) For the silos with the conical insert, disk insert, solid cylinder insert and sphere insert, both measurement techniques show that the granular flow exhibits uniform vertical velocity profiles. However for the silo with the hollow cylinder insert, the granular vertical velocity inside the insert is much faster than that outside the insert, exhibiting an extremely uneven vertical velocity profile; (3) Compared with silos with no insert, 15cm-orifice silos with conical insert, disk insert, solid cylinder insert and sphere insert exhibit small and more evenly distributed granular temperature. Similarly, 10cm-orifice silos with conical insert and disk insert also show small and more evenly distributed granular temperature; (4) In the 15cm-orifice silos with no insert, conical insert, disk insert, solid cylinder insert, sphere insert and BINSERT, the distribution of fluctuation velocity is uniform and similar to the Maxwell distribution. By contrast, for the silo with hollow cylinder insert, the fluctuation velocity is widely distributed and exhibits an M-shaped distribution, indicating that the vertical velocity is not uniform; and (5) In the 10cm-orifice silo with conical insert, the fluctuation velocity shows the Maxwell distribution. However, for the silos with disk insert, solid cylinder insert, sphere insert and BINSERT, the distribution of fluctuation velocity is shifted to the right. For the silo with hollow cylinder insert, the fluctuation velocity is still distributed widely and unevenly.
關鍵字(中) ★ 擬三維儲槽卸載實驗
★ 顆粒物質
★ PIV 量測方法
★ PTV 量測方法
★ 置入物
★ 傳輸性質
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 v
附圖目錄 vi
第一章 緒論 1
1.1研究背景 1
1.2文獻回顧 1
1.2.1儲槽中傳輸性質量測技術相關文獻 1
1.2.2無置入物儲槽相關文獻 2
1.2.3置入物儲槽相關文獻 6
1.2.4電腦模擬相關文獻 8
1.3研究動機與目的 9
第二章實驗方法……………………………………………………………………………10
2.1實驗設備…………………………………………………………………………….10
2.2量測技術…………………………………………………………………………….12
2.2.1粒子影像測速技術(Particle Image Velocimetry, PIV) 12
2.2.2粒子追蹤測速技術(Particle Tracking Velocimetry, PTV) 13
2.2.3影像分析流程 14
2.2.3.1 PIV粒子影像測速技術 15
2.2.3.2 PTV粒子追蹤影像處理 15
2-3實驗步驟…………………………………………………………………………….15
2-4傳輸性質…………………………………………………………………………….16
第三章 結果與討論. 19
3.1置入物對顆粒體在儲槽內流速分佈之影響………………………….……………19
3.1.1出口尺寸15cm儲槽的垂直速度分佈 19
3.1.2出口尺寸15cm儲槽的徑向速度分佈圖 22
3.1.3出口尺寸10cm儲槽的垂直速度分佈 24
3.1.4出口尺寸10cm儲槽的徑向速度分佈 26
3.2置入物對顆粒體在儲槽內粒子溫度分佈之影響………………………………….28
3.2.1出口尺寸15cm儲槽的粒子溫度分佈. 28
3.2.2出口尺寸10cm儲槽的粒子溫度分佈. 30
3.3置入物對顆粒體在儲槽內擾動速度分佈之影響………………………………….31
3.3.1出口尺寸15cm儲槽的擾動速度分佈 31
3.3.2出口尺寸10cm儲槽的擾動速度分佈 32
第四章結論 33
參考文獻 34
附表 37
附圖 39
參考文獻 [1] C. Y. Peng, C. Y. Hsu, Chemical Looping Technology – Opportunity and Challenge of CO2 Capture, Combustion Quarterly 21 (2012) 75-87.
[2] J. Wu, B. Jiang, J. Chen, and Y. Yang, Multi-scale study of particle flow in silos, Adv. Powder Technol. 20 (2009) 62-73.
[3] S. S. Hsiau, J. Smid, H. H. Tsai, J. T. Kuo, C. S. Chou, Flow patterns and velocity fields of granules in Dorfan Impingo filters for gas cleanup, Chem. Eng. Sci. 55 (2000) 4481-4494.
[4] S. S. Hsiau, J. Smid, S. A. Tsai, C. C. Tzeng, Y. J. Yu, Flow of filter granules in moving granular beds with louvers and sublouvers, Chem. Eng. Process 47 (2008) 2084-2097.
[5] C. S. Chou, W. F. Lo, J. Smid, J. T. Kuo, and S. S. Hsiau, The flow patterns and stresses on the wall in a symmetric louvered-wall moving granular filter bed, Powder Technol. 131 (2003) 166-184.
[6] C. S. Chou, and T. L. Yang, Flow patterns and wall stresses in a moving granular filter bed with a curved symmetric louvered wall, Adv. Powder Technol. 5 (2005) 451-471.
[7] M. Danczyk, T. Meaclem, M. Mehdizad, D. Clarke, P. Galvosas, L. Fullard, D. Holland, Influence of contact parameters on Discrete Element method (DEM) simulations of flow from a hopper: Comparison with magnetic resonance imaging (MRI) measurements, Powder Technol. 372 (2020) 671-684.
[8] A. E. Berg, M. G. Christiansen, B. V. Balakin, P. Kosinski, Investigation of dust dispersion in a modified Hartmann tube using positron emission particle tracking and simulations, J. Loss Prevent Proc. (2018).
[9] T. Börzsönyi, E. Somfai, B. Szabó, S. Wegner, P. Mier, G. Rose, R. Stannarius, Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment, New J. Phys. 18 (2016) 093017.
[10] L. A. Fullard, C. E. Davies, A. C. Neather, E. C. P. Breard, A. J. R. Godfrey, and G. Lube, Testing steady and transient velocity scalings in a silo, Adv. Powder Technol. 29 (2018) 310-318.
[11] M. C. Garcia, H. J. Feise, S. Strege, A. Kwade, Segregation in heaps and silos: Comparison between experiment, simulation and continuum model, Powder Technol. 293 (2016) 26-36.
[12] J. C. Mathews, W. Wu, Model tests of silo discharge in a geotechnical centrifuge, Powder Technol. 293(2016) 3-14.
[13] C. Slominski, M. Niedostatkiewicz,J. Tejchman, Application of particle image velocimetry (PIV) for deformation measurement during granular silo flow, Powder Technol. 173 (2007) 1-18.
[14] J. Song, H. Yang, R. Li, Q. Chen, Y.J. Zhang, Y.J. Wang, P. Kong, Improved PTV measurement based on Voronoi matching used in hopper flow, Powder Technol, (2019) 172-182.
[15] R. O. Uñac, A. M. Vidales, O. A. Benegas, I. Ippolito, Experimental study of discharge rate fluctuations in a silo with different hopper geometries, Powder Technol. 225 (2012) 214-220.
[16] P. Tu, V. Vimonsatit, J. Li, Silo quake response spectrum of iron ore train load out bin, Adv. Powder Technol. 29 (2018) 2275-2784.
[17] N. Engblom, H. Saxén, R. Zevenhoven, H. Nylander, G. G. Enstad, Effects of process parameters and hopper angle on segregation of cohesive ternary powder mixtures in a small scale cylindrical silo, Adv. Powder Technol. 23 (2012) 566-579.
[18] X. Wang, C. Liang, X. Guo, Y. Chen, D. Liu, J. Ma, X. Chen,H. An, Experimental study on the dynamic characteristics of wall normal stresses during silo discharge, Powder Technol. 363 (2020) 509-518.
[19] M. Wójcik, M. Sondej, K. Rejowski, J. Tejchman, Full-scale experiments on wheat flow in steel silo composed of corrugated walls and columns, Powder Technol. 311 (2017) 537-555.
[20] Y. Chen, C. Liang, X. Wang, X. Guo, X. Chen, D. Liu, Static Pressure Distribution Characteristics of Powders Stored in Silos, Chem. Eng. Res. Des. 154 (2020) 1-10.
[21] A. Couto, A. Ruiz, P. J. Aguado, Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge. Comparison with Eurocode 1 part 4, Powder Technol. 237 (2013) 450-467.
[22] J. Ha ̈rtl, J. Y. Ooi, J. M. Rotter, M. Wojcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des. 86 (2008) 370-378.
[23] M. Wójcik, J. Tejchman, G.G. Enstad, Confined granular flow in silos with inserts — Full-scale experiments, Powder Technol. 222 (2012) 15-36.
[24] H. Hammadeh, F. Askifi, A. Ubysz, M. Maj, A. Zeno, Effect of using insert on the flow pressure in cylindrical silo, Studia Geotech. et Mech., 41 (2019) (177-183).
[25] W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, B. C. Hancock, Predicting the flow mode from hoppers using the discrete element method, Powder Technol. 195 (2009) 1-10.
[26] Y. Zhang, Y. Wang, P. Jia, Improving the Delaunay tessellation particle tracking algorithm in the three-dimensional field, Meas.49 (2014) 1-14.
[27] X. Song, F. Yamamoto, M. Iguchi, Y. Murai, A new tracking algorithm of PIV and removal of spurious vectors using Delaunay tessellation, Exp. Fluids 26 (1999) 371-380.
[28] M. Ishikawa, Y. Murai, A. Wada, M. lguchi, K. Okamoto, F. Yamamoto, A novel algorithm for particle tracking velocimetry using the velocity gradient tensor, Exp. Fluids 29 (2000) 519-531.
[29] H. Capart, D. L. Young, Y. Zech, Voronoï imaging methods for the measurement of granular flows, Exp. Fluids 32 (2002) 121-135.
[30] J. Li, P. A Langston, C. Webb, T. Dyakowski, Flow of Sphero-disc particles in rectangular hoppers—a DEM and experimenta comparison in 3D, Chem. Eng. Sci. 59 (2004) 5917-5929.
[31] P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47-65.
[32] S.C. Yang, S.S. Hsiau, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technol. 120 (2001) 244-255.
[33] R. Kobyłka, M. Molenda, DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction, Powder Technol. 256 (2014) 210-216.
[34] R. Kobyłka, M. Molenda, J. Horabik, DEM simulation of the pressure distribution and flow pattern in a model grain silo with an annular segment attached to the wall, Biosyst . Eng. 193 (2020) 75-89.
[35] 郭庭君, 「以離散元素法電腦模擬探討顆粒體在不同置入物儲槽中的傳輸性質與內部性質」,國立中央大學,碩士論文,民國109年。
[36] R. D. Keane, R. J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res. 49 (1992) 191-215.
[37] L. Sarno, A. Carravetta , Y. C. Tai, R. Martino, M. N. Papa, C. Y. Kuo, Measuring thevelocity fields of granular flows – Employment of a multi-pass two-dimensional particleimage velocimetry (2D-PIV) approach, Adv. Powder Technol. 29 (2018) 3107-3123.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2021-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明