博碩士論文 107323093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.118.162.180
姓名 陳琨鈺(KUN-YU CHEN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法探討顆粒振動床的迴流機制
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-31以後開放)
摘要(中) 本研究採用離散元素法(Discrete Element Method, DEM)探討類二維顆粒振動床的迴流機制,在振動頻率為f=25Hz與振動加速度為12g(g為重力加速度)的條件下,探討不同側壁、不同底壁與不同邊壁傾角對顆粒體在振動床內流動行為的影響。本研究探討振動床邊界條件對顆粒體迴流現象的影響,探討的物理量包含顆粒體的平移速度向量、迴流率、粒子溫度、配位數、粒子體積佔有率及內部應力,並探討這些物理量相互之間的關聯性。本研究證實剪力帶的存在,而且剪力帶趨動顆粒體產生迴流現象,剪力帶的強度亦反映迴流強度,兩側剪應力的方向決定迴流的方向,正向迴流在邊壁上的剪應力為右負左正,逆向迴流在邊壁上呈現右正左負,當剪力帶的方向改變時,迴流的方向隨之改變。研究結果顯示在該振動條件下,顆粒振動床均呈現迴流現象,而且均具有兩個主要迴流包。當垂直側壁有顆粒時,顆粒體呈現正向迴流,當垂直側壁沒有顆粒時,即使底壁有顆粒,顆粒體仍呈現逆向迴流。當兩側邊壁為連續顆粒排列時,內傾角度小於或等於0度,顆粒體呈現正向迴流,相反地,外傾角度大於或等於15度時,顆粒體呈現逆向迴流。當傾角由內傾轉為外傾,中間存在著過渡區,由正向迴流轉變至逆向迴流,而且迴流強度隨著向內(外)傾斜的角度增加而增強。四種不同側壁的振動床與四種不同底壁的振動床,迴流強度皆隨著顆粒間距的增加而下降,但靠近顆粒壁面區域的粒子溫度皆隨著顆粒間距的增加而增加。兩側邊壁的正向應力與剪應力皆隨著顆粒間距的增加而下降,迴流強度亦有相同的趨勢。兩傾斜邊壁的正向應力與剪應力皆隨著向內(外)傾斜的角度增加而增強,迴流強度亦有相同的趨勢。
摘要(英) The purpose of the study is to investigate the convection mechanism of granular assemblies in quasi-2D vibrating beds by using discrete element method (DEM). The study investigates the effects of side walls, bottom walls and sidewall inclination on the flow behavior of particles in the vibrating beds. The vibration condition is at a frequency of f=25Hz and an acceleration amplitude of 12g (g is acceleration of gravity). The physical properties include the translational velocity vector, convection rate, granular temperature, coordination number, solid volume fraction and granular stress. The relationships amongst these physical properties are also explored. Numerical results corroborate the existence of shear bands and these shear bands drive particles to circulate in the vibrating beds. The strength of the shear bands corresponds to the convection rate, and the direction of shear stresses on both sides determine the direction of the convection cells. The shear stress of the positive convection shows a negative value in the right side and a positive value in the left side, and vice versa. As the direction of the shear bands reverses, the direction of the convection cells also reverses correspondingly.
Numerical results also show that under this vibration condition, the particle convection phenomenon takes place and exhibits two main convection cells. If there are particles glued on the vertical side walls, the particle bed shows positive convection. If there are no particles glued on the vertical side walls, even when some particles are glued on the bottom wall, the particle bed still exhibits negative (reverse) flow. For the vibrating beds with the side walls having particles glued one by one, as the inward inclination angle is less than or equal to 0o, the particle beds show positive convection. Conversely, as the outward inclination angle is greater than or equal to 15 o, the particle beds show negative (reverse) convection. As the inclination angle varies from inward inclination to outward inclination, there exists a transition regime indicating that positive convection is transformed into negative (reverse) convection and that the convection rate increases with the magnitude of the inclination angle. For the vibrating beds with four different side walls and with four different bottom walls, the convection rate decreases with the increase of particle spacing on the particle walls. However, the granular temperature near the particle walls increases with particle spacing. The normal and shear stresses of the side walls decrease with the increase of the particle spacing, and the convection rate also has the same trend. The normal and shear stresses of the inclined side walls generally increase with the magnitude of the inclination angle, and the convection rate also shows the same trend.
關鍵字(中) ★ 顆粒物質
★ 離散元素模擬
★ 傳輸性質
★ 振動床內部應力
★ 迴流現象
★ 剪力帶
關鍵字(英)
論文目次 目錄
摘要 v
Abstract vi
目錄 vii
附表目錄 ix
附圖目錄 x
第一章 緒論 1
1-1 顆粒體 1
1-2 振動系統內顆粒體的迴流現象 1
1-3 文獻回顧 2
1-3-1 垂直振動 2
1-3-2 水平振動 5
1-4 研究動機與目的 7
第二章 研究方法 8
2-1 離散元素法 8
2-1-1 離散元素法之架構 8
2-1-2 三維剛體運動方程式 8
2-1-3 接觸力模型 9
2-1-4 臨界時間步 11
2-2 顆粒系統傳輸性質 12
2-2-1 局部平均速度及局部擾動速度 12
2-2-2 局部粒子溫度 13
2-2-3 無因次迴流率 13
2-3 顆粒系統內部微觀物理量 14
2-3-1 粒子體積佔有率 14
2-3-2 平均配位數 14
2-3-3 應力 15
2-4 垂直振動床模型設計 17
2-4-1側壁的模型設定 17
2-4-2 底壁的模型設定 18
2-4-3 邊壁傾斜度的模型設定 18
第三章 結果與討論 19
3-1側壁對顆粒體在振動床內流動行為的影響 19
3-1-1 傳輸性質 19
3-1-2 內部性質 21
3-2 底壁對顆粒體在振動床內流動行為的影響 24
3-2-1 傳輸性質 24
3-2-2 內部性質 25
3-3邊壁傾斜角度對顆粒體在振動床內流動行為的影響 29
3-3-1 傳輸性質 30
3-3-2 內部性質 32
第四章 結論 41
參考文獻 43
附表 46
附圖 49
參考文獻 [1] B. Chen, P. Wu, H. Xing, H. Liu, L. Li, L. Wang, Convection behavior of ellipsoidal particles in a quasi-two-dimensional bed under vertical vibration, Powder Technol. 363 (2020) 575–583.
[2] L. Li, P. Wu, S. Zhang, L. Wang, Patterns of particle convection in a mono-size granular system under coupling vibration and airflow, Powder Technol. 342 (2019) 954–960.
[3] J. Sun, C. Liu, P. Wu, Z.-A. Xie, K. Hu, L. Wang, Granular core phenomenon induced by convection in a vertically vibrated cylindrical container, Phys. Rev. E. 94 (2016) 032906.
[4] M. Majid, P. Walzel, Convection and segregation in vertically vibrated granular beds, Powder Technol. 192 (2009) 311–317.
[5] A. Kogane, K. Kuwagi, Y. Mawatari, L. Davoren, J.P.K. Seville, D.J. Parker, Convective flow speed of particles in a vibrated powder bed, J. Phys. Commun. 4 (2020) 075012.
[6] A. Menbari, K. Hashemnia, Studying the particle size ratio effect on granular mixing in a vertically vibrated bed of two particle types, Particuology. 53 (2020) 100–111.
[7] M. Umehara, K. Okumura, Rising Obstacle in a Two-dimensional Granular Bed Induced by Continuous and Discontinuous Vibrations: Dynamics Governed by Vibration Velocity, J. Phys. Soc. Jpn. 89 (2020) 035001.
[8] A. Menbari, K. Hashemnia, Effect of vibration characteristics on the performance of mixing in a vertically vibrated bed of a binary mixture of spherical particles, Chem. Eng. Sci. 207 (2019) 942–957.
[9] M. Cho, P. Dutta, J. Shim, A non-sampling mixing index for multicomponent mixtures, Powder Technol. 319 (2017) 434–444.
[10] K. Zhang, T. Chen, L. He, Damping behaviors of granular particles in a vertically vibrated closed container, Powder Technol. 321 (2017) 173–179.
[11] C. Liu, P. Wu, L. Wang, L. Tong, S. Yin, Patterns of granular convection and separation in narrow vibration bed, EPJ Web Conf. 140 (2017) 03031.
[12] J.B. Knight, External boundaries and internal shear bands in granular convection, Phys. Rev. E. 55 (1997) 6016–6023.
[13] C.C. Liao, M.L. Hunt, S.S. Hsiau, S.H. Lu, Investigation of the effect of a bumpy base on granular segregation and transport properties under vertical vibration, Phys. Fluids. 26 (2014) 073302.
[14] S.S. Hsiau, P.C. Wang, C.H. Tai, Convection cells segregation in vibrated granular bed, AIChE journal 48 (2002) 1430.
[15] H. Cai, G. Miao, Horizontal flow in a vertically vibrated granular layer, Particuology. 46 (2019) 93–98.
[16] A. Rehman, P. Wu, L. Li, S. Zhang, L. Wang, Effects of the moment of inertia on the energy dissipation and convection motion of particles in a horizontally vibrated monolayer, Chin. J. Phys. 55 (2017) 1713–1722.
[17] A. Rehman, P. Wu, L. Li, S. Zhang, L. Wang, Convection Rolls and Individual Particles Movements in Horizontally Vibrated Granular Particles System, Acta Phys. Pol. A. 130 (2016) 1336–1342.
[18] M. Medved, D. Dawson, H.M. Jaeger, S.R. Nagel, Convection in horizontally vibrated granular material, Chaos Interdiscip. J. Nonlinear Sci. 9 (1999) 691–696.
[19] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique. 29 (1979) 47–65.
[20] Y.C. Chung, C.W. Wu, C.Y. Kuo, S.S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Appl. Math. Model. 74 (2019) 540–568.
[21] Y.C. Chung, H.H. Liao, S.S. Hsiau, Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experimental validation, Powder Technol. 237 (2013) 53–66.
[22] K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, UK, 1985.
[23] C. O’Sullivan, J.D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Comput. 21 (2004) 278–303.
[24] Matweb, Chi Mei Polylac PA-707 ABS, http://www.matweb.com/, accessed on April 25, 2013.
[25] 魏士傑,「振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應」,國立中央大學機械工程學系固力與設計組碩士班碩士論文,民國107年。
[26] Itasca Consulting Group Inc., PFC3D- Particle Flow Code in three Dimensions, Minneapolis, USA, 2010.
指導教授 鍾雲吉 審核日期 2021-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明