博碩士論文 105383007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.191.176.81
姓名 葉宏易(Hong-Yih Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 陰影疊紋瞬時分析技術研發及其於觸覺感測之應用
(Development of an instantaneous analysis technique for shadow moiré method and its application to tactile sensing)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 本文提出了一種陰影疊紋瞬時分析(instantaneous analysis technique for shadow moiré method)技術,以量測動態面外之位移(dynamic out-of-plane displacement) ,並用於開發新型光學干涉型觸覺感測或壓力感測器。陰影疊紋法廣泛應用於量測移動面外之位移,例如物體表面的變形或翹曲。通常,使用移相方法(phase-shifting method, PSM)分析陰影疊紋圖的相位而獲得移動面外之位移。然而此方法必須精確的移動光柵才能產生精確移相,而求出位移。傳統上使用線性位移平台(linear translation stages)提供光柵的移動,而線性位移平台具有位移誤差及移動速度慢等缺點。因此,本文提出一種混合時間域與空間域的移相方法,設計一組含4個步高(step-height)的新型階梯結構板,以產生具有正交相位的陰影疊紋,並用於瞬時提取陰影疊紋相位,以測量物體的動態面外之位移。既可以不用線性位移平台,又可快速取得陰影疊紋相位。實驗證明,此方法可以有效地檢測出動態面外之位移,且具有微米級的分辨率,並且能夠將位移誤差抑制到0.83%。本文所提出的一種陰影疊紋瞬時分析測量方法適合於觸覺感測器開發或壓力感測的應用。
摘要(英) This thesis presents an instantaneous analysis technique for shadow moiré method for dynamic out-of-plane displacement measurement. The proposed method can be used to develop a new type of optical interference tactile sensor or pressure sensor. The shadow moiré method is widely applied to the measurement of the out-of-plane displacement, such as the deformation or warpage on the surface of the objects. Generally, the phase-shifting method is used to analyze the phases of the shadow moiré fringes and to obtain the out-of-plane displacement. To generate accurate phase shifting, the grating must be moved step by step precisely. Traditionally, the movement of the grating is realized by a linear translation stage. However, such a mechanical stage generates displacement error, and its moving speed is slow. Therefore, a novel stair-structured plate consisting of a series of 4-step-height sets is designed to produce shadow moiré fringes with the quadrature phase. The quadrature-phase fringes are utilized to extract instantaneously the shadow moiré phase for measurement of the dynamic out-of-plane displacement of an object. Experiments show that our method can effectively detect the dynamic out-of-plane displacement with a micrometric scale resolution and is capable of suppressing the discrepancy of displacement to 0.83 %. The proposed method for measuring the out-of-plane displacement is suitable for the application to the tactile sensor and pressure sensing.
關鍵字(中) ★ 陰影疊紋法
★ 動態面外位移
★ 移相方法
★ 觸覺感測器
關鍵字(英) ★ shadow moiré method
★ out-of-plane displacement
★ phase-shifting method
★ tactile sensor
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 文獻回顧 3
1.3.1 觸覺感測器 3
1.3.2 光學式觸覺感測器 13
1.3.3 陰影疊紋量測法 16
1.3.4 小結 23
1.4 論文架構 24
第二章基礎理論 26
2.1壓阻式觸覺感測器工作原理 26
2.2光學觸覺感測器工作原理 28
2.2.1 光學反射式觸覺感測器工作原理 29
2.2.2 光學干涉法工作原理 30
2.3 陰影疊紋瞬時分析觸覺感測器工作原理 32
2.3.1 疊紋位移量測原理 32
2.3.2 陰影疊紋原理 34
2.3.3 陰影疊紋瞬時分析技術原理 37
2.3.4 陰影觸覺瞬時分析感測器運作方式 40
2.4小結 40
第三章 系統架構與模擬 42
3.1 陰影疊紋瞬時分析系統模擬架構 42
3.2位移量測模擬 43
3.3觸覺量測模擬 49
3.4 實驗架構 51
3.5 光柵與四階結構設計與製造 53
3.5.1 光柵設計與製造 53
3.5.2 四階結構設計與製造 54
3.6小結 55
第四章 實驗與討論 56
4.1 實驗平台設置與校正 56
4.2 陰影疊紋瞬時分析技術實驗 58
4.3 雷射測距系統校正 63
4.4 位移實驗結果 64
4.5 觸覺感測應用實驗 71
4.5.1 感測板灰階測試 73
4.5.2不同負載壓力量測 75
4.5.3不同感測範圍量測 77
4.5.4 感測器的特性與應用領域 79
4.6 小結 81
第五章 誤差分析 82
5.1 系統誤差來源 82
5.1.1 有效光柵週期 82
5.1.2 四階結構的階高度 84
5.1.3 光源不均勻 90
5.2 隨機誤差 91
5.3 系統誤差模型 91
5.4 誤差修正 94
5.5 小結 94
第六章 結論與未來展望 95
6.1 結論 95
6.2 未來展望 96
參考文獻 97
附錄一:研究績效 108
參考文獻 [1] C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, “A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer,” IEEE Sensors Journal 17(17), 5523-5528 (2017).
[2] P. D. Groot, “Principles of interference microscopy for the measurement of surface topography.” Advances in Optics and Photonics 7(1), 1-65 (2015).
[3] Z. Kappassov, J.A. Corrales, V. Perdereau, “Tactile sensing in dexterous robot hands - review.” Rob. Auton. Syst. 74(17), 195-220 (2015).
[4] Interlink Electronics, “ FSR® Integration Guide.”, Document part number 94-00004 Rev. C
[5] Y. C. Tung, K. G. Shin, “Expansion of Human-Phone Interface By Sensing Structure-Borne Sound Propagation.” MobiSys’ 16 : Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, 277–289 (2016).
[6] S. Luo, J. Bimbo, R. Dahiya, H. Liu, “Robotic Tactile Perception of Object Properties: A Review.” ArXiv abs/1711.03810 (2017).
[7] L. Zou, C. Ge, Z. J. Wang, E. Cretu, Li, X, “Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review.” Sensors 17(11), 2653 ( 2017).
[8] C. Cheng, X. Sun, X. Ning, T. Li, C. Liu, “Recent Progress in Technologies for Tactile Sensors.” Sensors 18(9), 948 (2018).
[9] M. Ohka, N. Morisawa, H. Suzuki, J. Takata, H. Koboyashi, H. B. Yussof, "A robotic finger equipped with an optical three-axis tactile sensor." IEEE International Conference on Robotics and Automation, 3425-3430 (2008).
[10] W. Yuan, S. Dong, E. Adelson, “Gelsight: High-resolution robot tactile sensors for estimating geometry and force.” Sensors 17(12), 2762 (2017).
[11] K. Shimonomura, “Tactile Image Sensors Employing Camera: A Review.“ Sensors 19(18), 3933 (2019).
[12] L. Rayleigh, "XII. On the manufacture and theory of diffraction-gratings," London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47(310), 81-93 (1874).
[13] K. Creath, “Phase measurement interferometry techniques.” Prog. Opt. 26, 349–393 (1988).
[14] D. Zwemer, et al, “PWB Warpage Analysis and Verification Using an AP210 Standards-based Engineering Framework and Shadow Moiré.” EuroSimE, 121-131 (2004).
[15] H. Neil, “Measuring Die Tilt Using Shadow Moiré Optical Measurements; New Techniques for Discontinuous and Semi-Reflective Surfaces.” International Symposium on Microelectronics, 612-617 (2016).
[16] J. Bruning, Optical Shop Testing ed D Malacara. 3rd ed. (Wiley 2007).
[17] J. Li, L. Zhong, S. Liu, Y. Zhou, J. Xue, J. Tian, X. Lu, “An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts.” Sci. Rep. 7, 44307 (2017).
[18] M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry.” J. Opt. Soc. Am. 72(1), 156-160 (1982).
[19] M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes.” Appl. Opt. 22, 3977–3982 (1983).
[20] M. Kujawinska, J. Wójciak, “High accuracy Fourier transform fringe pattern analysis.” Opt. Lasers Eng. 14(4-5), 325-339 (1991).
[21] S. De Nicola, P. Ferraro, S. De Nico, “Fourier transform method of fringe analysis for moiré interferometry.” J. Opt A-Pure Appl Op. 2(3), 228-233 (2000).
[22] X. Su, W. Chen, “Fourier transform profilometry: a review.” Opt. Lasers Eng. 35, 263–284 (2001).
[23] Q. Kemao, H. Wang, W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analyses.” Appl Opt 47, 5408–5419 (2008).
[24] L. Huang, Q. Kemao, B. Pan, K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry.” Opt Lasers Eng 48(2), 141-148 (2010).
[25] M. Takeda, “Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review.” Appl Opt 52, 20-29 (2013).
[26] A. Ahadi, A. Khoshnevis, M. Z. Saghir, “Windowed Fourier transform as an essential digital interferometry tool to study coupled heat and mass transfer.” Opt. Laser Technol. 57, 304-317 (2014).
[27] S. Ri, N. Agarwal, Q. Wang, Q. Kemao, “Comparative study of sampling moiré and windowed Fourier transform techniques for demodulation of a single-fringe pattern.” Appl. Opt. 57(36), 10402-10411 (2018).
[28] C. Zhou, S. Si, X.L. Li, “Dynamic 3D shape measurement based on the phase-shifting moire algorithm.” Proc. SPIE 11455, Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, 114553G (2020).
[29] Interlink Electronics, “ FSR® 400 Data Sheet.”
[30] S. Begej, “Planar and finger-shaped optical tactile sensors for robotic applications.” IEEE Robot. Autom. J. 4(5), 472-484 (1988).
[31] R. Ahmadi, M. Packirisamy, J. Dargahi, R. Cecere, “Discretely Loaded Beam-Type Optical Fiber Tactile Sensor for Tissue Manipulation and Palpation in Minimally Invasive Robotic Surgery.” IEEE Sens. J. 12(1), 22-32 (2012).
[32] H. Xie, A. Jiang, L. Seneviratne, K. Althoefer, “Pixel-based optical fiber tactile force sensor for robot manipulation.” Sensors, 2012 IEEE, Taipei (2012).
[33] E. Knoop, J. Rossiter, “Dual-mode compliant optical tactile sensor.” Robotics and Automation (ICRA) 2013 IEEE International Conference on, 1006-1011 (2013).
[34] N. F. Lepora, B. Ward-Cherrier, “Superresolution with an optical tactile sensor.” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg (2015).
[35] J. Konstantinova, A. Stilli, K. Althoefer, “Fingertip Fiber Optical Tactile Array with Two-Level Spring Structure.” Sensors 17(10), 2337 (2017).
[36] B. Fang, F. C. Sun, C. Yang, “A dual-modal vision-based tactile sensor for robotic hand grasping.” In 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia (2018).
[37] T. Taunyazov, W. Sng, H. H. See, B. Lim, J. Kuan, H. Soh, “Event-Driven Visual-Tactile Sensing and Learning for Robots.” 2020 Robotics: Science and Systems conference(RSS) (2020).
[38] M. Sereinig, W. Werth, L. Faller, “A review of the challenges in mobile manipulation: systems design and RoboCup challenges.” Elektrotech. Inftech. 137, 297–308 (2020).
[39] C. Trueeb, C. Sferrazza, R. D′Andrea, “Towards vision-based robotic skins: a data-driven, multi-camera tactile sensor.” 2020 3rd IEEE International Conference on Soft Robotics (2020).
[40] D. Post, B. Han, P. Ifju, “High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials.” Berlin: Springer (1994).
[41] L. Wang, H. Peng, X. Wang, “PDMS/MWCNT-based tactile sensor array with coplanar electrodes for crosstalk suppression.” Microsyst. Nanoeng. 2, 16065 (2016).
[42] Z. Yi, Y. Zhang, J. Peters, “Bioinspired Tactile Sensor for Surface Roughness Discrimination.” Sens. Actuator A Phys. 255(10), 1016 (2017).
[43] H. X. Song, X. Wang, L. Ma, M. Cai, T. Cao, “Design and Performance Analysis of Laser Displacement Sensor Based on Position Sensitive Detector (PSD).” J. Phys. Conf. Ser. 48(1), 217 (2006).
[44] J. Bruning, D. Herriott, J. Gallagher, D. Rosenfeld, A. White, D. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses.” Appl. Opt. 13(11), 2693-2703 (1974).
[45] R. Torroba, N. Bolognini, M. Tebaldi, A. Tagliaferri, “Positioning method based on digital moiré.” Opt. Commun. 209, 1-6 (2002).
[46] J. Wu, T. Zhou, Yuan B., “A digital moiré fringe method for displacement sensors.” Front. Inf. Technol. Electron. Eng. 17, 946–953 (2016).
[47] P. Geng, “Application of shadow Moire technique to board level manufacturing technologies.” 56th Electronic Components and Technology Conference 2006, San Diego, CA (2006).
[48] R. F. Mousley, “A shadow moire technique for the measurement of damage in composites.” Compos. Struct. 4, 231-244 (1985).
[49] Y. Arai, S. Yokozeki, “Improvement of measurement accuracy in shadow moiré by considering the influence of harmonics in the moiré profile.” Appl. Opt. 38(16), 3503-3507 (1999).
[50] K. J. Gåsvik, Optical Metrology. 3rd ed. (Wiley 2002).
[51] P. Carré, “Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures.” Metrologia 2(1), 13-23 (1966).
[52] J. I. Fujimoto, “Determination of the vibrating phase by a time-averaged shadow moire method.” Appl. Opt. 21(23), 4373-4376 (1980).
[53] V. Gushov, Y. Solodkin, “Automatic processing of fringe patterns in integer interferometers.” Opt. Lasers Eng. 14(4-5), 311-324 (1991).
[54] A. J. P. Van Haasteren, H. J. Frankena, “Real-time displacement measurement using a multicamera phase-stepping speckle interferometer.” Appl. Opt. 33(19), 4137-4142 (1994).
[55] Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping.” Appl. Opt. 35(1), 51-60 (1996).
[56] I. Yamaguchi, T. Zhang, “Phase-shifting digital holography.” Opt. Lett. 22(16), 1268-1270 (1997).
[57] S. N. Perrin, C. C. Guilherme, “The Shadow Moiré method using the phase shifting technique and digital image processing: computational implementation and application to the 3D-reconstruction of a buckled plate.” Int. J. Mech. Sci. 22(3), 399-409 (2000).
[58] H. Ding, R. E. Powell, C. R. Hanna, I. C. Ume, “Warpage measurement comparison using shadow moiré and projection moiré methods.” IEEE Transactions on Components and Packaging Technologies 25(4), 714-721 (2002).
[59] C. J. Tay, C. G. Quan, Y. Fu, L. J. Chen, H. M. Shang, “Surface profile measurement of low-frequency vibrating objects using temporal analysis of fringe pattern.” Opt Laser Technol 36(6), 471-476 (2004).
[60] C. M. Liu, L. W. Chen, “Using the digital phase-shifting projection Moiré method and wavelet transformation to measure the deformation of a PMMA cantilever beam.” Polymer testing 24(5), 576-582 (2005).
[61] S. Ri, M. Fujigaki, Y. Morimoto, “Sampling Moiré method for accurate small deformation distribution measurement.” Exp. Mech. 50(4), 501-508 (2010).
[62] J. Buytaert, J. Dirckx, “Study of the performance of 84 phase-shifting algorithms for interferometry.” J. Opt. 40(114), (2011).
[63] H. Du, H. Zhao, B. Li, Z. Li, L. Zheng, L. Feng, “Algorithm for phase shifting shadow Moiré with an unknown relative step.” J. Opt. 13(3), 035405 (2011).
[64] S. Ri, T. Muramatsu, M. Saka, K. Nanbara, D. Kobayashi, “Accuracy of the sampling Moiré method and its application to deflection measurements of large-scale structures.” Exp. Mech. 52(4), 331-340 (2012).
[65] C. Liu, B. Lin, “Development of a nanometer resolution flatness measurement system for the ceramic surface by using Blue-ray optical pickup.” Microsyst. Technol. 19(11),1817-1821 (2013).
[66] T. Tahara, R. Mori, Y. Arai, Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dualwavelength information using a monochromatic image sensor.” J. Opt. 17(12), 125707(2015).
[67] Q. Wang, S Ri., H. Tsuda, “Digital sampling moiré as a substitute for microscope scanning moire for high-sensitivity and full-filed deformation measurement at micron/nano scales.” Appl. Opt. 55(25), 6858-6865 (2016).
[68] P. Xia, Q. Wang, S. Ri, H. Tsuda, “Calibrated phase-shifting digital holography based on a dual-camera system.” Opt. Lett. 42(23), 4954-4957 (2017).
[69] C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review.” Opt Lasers Eng 109, 23-59(2018).
[70] E. Massa, G. Mana, J. Krempel, M. Jentschel, “Polarization delivery in heterodyne interferometry.” Opt. Express 21, 27119-27126 (2013).
[71] W. Niu, L. Zhong, P. Sun, W. Zhang, X. Lu, “Two-step phase retrieval algorithm based on the quotient of inner products of phase-shifting interferograms.” J. Opt. 17(8), 085703 (2015).
[72] Y. Zhao, R. Yang, C. Yang, “An orthogonal phase shifting interferometry and its application to the measurement of optical plate.” Optik 127, 8841-8846 (2016).
[73] H. Du, J. Yan, J. Wang, “Random phase-shifting algorithm by constructing orthogonal phase-shifting fringe patterns.” Appl. Opt. 56(11), 3071-3076 (2017).
[74] M. Servin, J. Quiroga, J. Padilla, Fringe pattern analysis for optical metrology: Theory, Algorithms, and Applications. (Wiley 2014).
[75] B. Pan, Q. Kemao, L. Huang, A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry.” Opt. Lett. 34(4), 416-418 (2009).
[76] F. Chen, G. Brown, M. Song, “Overview of threedimensional shape measurement using optical methods.” Opt. Eng. 39(1), 10-22 (2000).
[77] R.S. Chang, Y.Y. Chen, K.W. Jwo, D.C. Chen, Y.C. Hsieh, “Application of automatized 3D moiré monitoring system in pulse measurement.” Opt. Eng. 40(1), 10–19 (2001).
[78] C. J. Tay, C. Quan, Y. Fu, Y. Huang, “Instantaneous velocity displacement and contour measurement by use of shadow moiré and temporal wavelet analysis.” Appl. Opt. 43(21), 4164-4171 (2004).
[79] J. A. Gómez-Pedrero, J. A.Quiroga, T.L. José, D. Crespo, “Measurement of surface topography by RGB shadow-Moiré with direct phase demodulation.” Opt. Lasers Eng. 44(12), 1297–1310 (2006).
[80] X. Su, Q. Zhang, “Dynamic 3D shape measurement method: a review.” Opt Lasers Eng 48(2), 191-204 (2010).
[81] J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, J. M. Carazo, Two-step interferometry by a regularized optical flow algorithm.” Opt. Lett. 36(17), 3485–3487 (2011).
[82] L. Huang, C. S. Ng, A. K. Asundi, “Fast full-field out-of-plane deformation measurement using fringe reflectometry.” Opt. Lasers Eng. 50, 529–533 (2012).
[83] H. Zhao, H. B. Du, L. Li, Y. W. Qin, “Shadow moiré technology based fast method for the measurement of surface topography.” Appl. Opt. 52(33), 7874-7881 (2013).
[84] H. Du, H. Zhao, B. Li, “Fast phase shifting shadow moiré by utilizing multiple light sources.” Proc. SPIE 8681, 86812A-6 (2013).
[85] F.Y. Cheng, Y.F. Chen, C.C. Lee, M.T. Lin, “Real-Time Shadow Moiré Measurement by Two Light Sources.” Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics 3, 101-103 (2020).
[86] H. Y. Yeh, Y. K. Hsu, A. C. Wei, J. Y. Lee, “Development of a high-speed tactile sensor with shadow-moiré technique.” 23rd Microoptics Conf. (MOC):2018P-75 (2018).
[87] H. Y. Yeh, Y. K. Hsu, A. C. Wei, J. Y. Lee, “Force-displacement measurement using simultaneous phase-shifting technique.” Jpn J Appl Phys 58:SJJD02 (2019).
[88] H. Y. Yeh, Y. K. Hsu, A. C. Wei, J. Y. Lee, “Dynamic out-of-plane displacement measurement using the instantaneous analysis phase-shifting method.” Microsyst. Technol. (2020).
[89] K. Itoh, “Analysis of the phase unwrapping problem.” Appl. Opt. 21(14), 2470 (1982).
[90] Veeco Instruments Inc.,“Veeco Dektak 6M Surface Profiler manual.” Veeco Instruments Inc. (2006).
[91] https://www.keyence.com.tw/products/measure/laser-1d/lk-g5000/models/lk-h150/
[92] 徐英凱,「陰影疊紋式力-位移量測技術之研究」,碩士論文,國立中央大學,2018年。
[93] AIKOH Engineering, “general catalog” MODEL 1349, Vol. 18.14.
[94] https://www.bnext.com.tw/article/54457/robotics-automation-industry-smart-manufacturer-tm.
[95] 巨承公司,“壓力分佈測試系統”,取自http://www.g-chen.com/products/
products_show.php?pid=100&cid=13&language=_tw.
[96] 蔡錫錚、賴景義、劉建聖、陳世叡、陳怡呈 : << 精密機械設計 >> ,第一版,台北市,五南書局,民國一零七年。
[97] M. Peralta, Measurement System Error Analysis: Analyzing and Reducing Measurement Errors in Test Systems. 1st ed. (Createspace Independent Publishing Platform 2012).
[98] 高斯分布,取自https://zh.wikipedia.org/zh-tw/正态分布。
[99] K. Hibino, B. Oreb, D. Farrant, K. Larkin, “Phase shifting for nonsinusoidal wavefronts with phase-shift errors.” J. Opt. Soc. Am. A 12(4), 761-768 (1995).
[100] H. M. Ladak, W. F. Decraemer, J. J. J. Dirckx, W. R. J. Funnell, “Systematic errors in small deformations measured by use of shadow-moiré topography.” Appl. Opt. 39(19), 3266-3275 (2000).
[101] C. Han, B. Han, “Error analysis of the phase-shifting technique when applied to shadow moiré.” Appl. Opt. 45(6), 1124-1133 (2006).
[102] S. Ri, M. Fujigaki, Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement.” Exp. Mech. 50(4), 501-508 (2010).
[103] E. Hack, J. Burke, “Invited review article: measurement uncertainty of linear phase-stepping algorithms.” Rev. Sci. Instrum. 82(6), 061101(2011).
[104] S. Ri, T. Muramatsu, “Theoretical error analysis of the sampling moiré method and phase compensation methodology for single-shot phase analysis.” Appl. Opt. 51(16), 3214-3223 (2012).
[105] R. J. Moffat, “Describing the uncertainties in experimental results.” Exp. Therm. Fluid Sci. 1(1), 3-17 (1988).
指導教授 韋安琪 李朱育(An-Chi Wei Ju-Yi Lee) 審核日期 2021-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明