博碩士論文 107323603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.135.198.150
姓名 蘇里汀(Sulatin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 轉鼓內顆粒物傳熱模型的 DEM 研究
(DEM Investigations of the Heat Transfer Model on Granular Matter Inside a Rotating Drum)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 許多研究人員已經開發出不同級別的模型,以預測旋轉鼓中的熱傳遞。離散元素法 (DEM)已廣泛用於研究顆粒系統。作為研究的主要重點,這項工作通過離散元素方法 (DEM)模擬進行闡述,以檢查壁面摩擦的影響,該影響分別由Dpw/Dp 和旋轉鼓內顆粒流的傳熱行為模式。在其他研究中,轉鼓建構為的兩個邊界不同,然後通過各種熱管阻力完成。通常用於此工作的鼓直徑為100毫米,深度為10毫米。轉鼓拱由64段壁面系統建構而成,其中32段壁面為獲取熱能,其他32個壁面則不為獲取熱能,每四個相鄰的壁段都吸收熱能,四個不吸收熱能,因此轉鼓在模擬1、2、4 (Dpw/Dp、模型、填充率)下會保持等效的熱能,此模型不適用於具有不同邊界的轉鼓模擬(模擬3) 。一些顆粒以相似的模式黏附在非加熱壁當中,直徑從0至5毫米不等,隨後產生不同的比例 (Dpw/Dp)。在相同Dpw/Dp下,轉鼓建構成五種模型: 模型_1、模型_2、模型_3、模型_4及模型_5 (模擬2),第三個模擬闡述了之前的第二個模擬(不同的邊界),也使用了30%、60%、90%的填充率來檢查轉鼓內顆粒物的平均溫度,整體模擬會控制轉鼓在10 rpm的速度。鼓壁和顆粒的初始溫度約為300 K,在模擬過程當中,將32個壁段充分加熱至800 K的恆定溫度,熱量通過間接傳熱機制傳遞給顆粒狀物質。結果顯示轉鼓在不同比例 (Dpw/Dp)產生大量平均溫度,此外模型的變化還影響轉鼓內顆粒物質的熱傳遞行為,該模擬還表明,增加熱導管阻力可以減少傳遞給顆粒的熱量,最後,提高填充率可以降低轉鼓內顆粒物的平均溫度。
摘要(英) Models at distinct levels have evolved by many researchers for predicting the heat transfer in rotating drums. The discrete element method (DEM) has widely used to investigate the granular system. As the main focus of the study, this work clarifies numerically by the discrete element method (DEM) simulation to examine the impact of wall friction that is denoted by the distinction of Dpw/Dp and pattern on heat transfer behavior of granular flow inside a rotating drum. In other investigations, the drum builds with two dissimilar boundaries then completed by various thermal pipe resistance. The impact of filling ratio as well investigate in this work. The drum typically applied to this work has 100 mm in diameter and 10 mm in depth. The drum arch is systematically structured by 64 segments wall 32 segment wall acquire the heat energy, while the other 32 not. Every four adjacent wall segments grabs the heat energy, and four wall segments neighboring them not. So, the drum sustains the equivalent heat energy for simulations 1, 2, and 4 (Dpw/Dp, pattern, and filling ratio). This model does not employ for the simulations on drums with different boundaries (simulation 3). Some particles are sticking in the non-heating walls in a similar pattern with various diameters from 0 to 5 millimeters later creates different ratios (Dpw/Dp). The drum is built into five models upon the same Dpw/Dp, which are pattern _1, pattern _2, pattern _3, pattern _4, and pattern 5 (simulation 2). The third simulation clarifies the second simulation before (different boundaries). 30, 60, and 90 % of filling ratios are also applied to review the average temperature of the granular matter inside the drum. Overall simulation control with 10 rpm of drum speed. The initial temperature for drum walls and particles is around 300 K. The 32 wall segments are heated sufficiently by the constant temperature of 800 K during the simulation. The heat transmits to the granular matter via an indirect heat transfer mechanism. The results exhibit the different ratios (Dpw/Dp) of the drum generating numerous average temperatures. Furthermore, the variation of patterns also affects for heat transfer behavior of granular matter inside the drum. The simulation also represents that the increase of thermal pipe resistant can reduce the heat conveyed to the particles. The last, enhance of filling ratio can decrease the average temperature of granular matter inside the drum.
關鍵字(中) ★ 轉鼓
★ DEM 熱傳
★ 顆粒比(Dpw/Dp)
★ 模擬
★ 邊界
★ 填充率
關鍵字(英) ★ rotating drum
★ DEM heat transfer
★ particle ratio(Dpw/Dp)
★ pattern
★ boundary
★ filling ratio
論文目次 摘要 ……………………………………………………………………………………..i
ABSTRACT …………………………………………………………………………….ii
ACKNOWLEDGEMENT ……………………………………………………………...iii
CONTENTS …………………………………………………………………………….iv
LIST OF FIGURE ……………………………………………………………………....vi
LIST OF TABLES ……………………………………………………………………... ix
LIST OF SYMBOL ……………………………………………………………………...x
CHAPTER 1 INTRODUCTION ………………………………………………………...1
1.1. Introduction ……………………………………………………………………...1
1.2. Research Motivation and Organization ………………………………………….6
1.2.1. Research motivation ……………………………………………………...6
1.2.2. Thesis organization …………………………………………………….....8
CHAPTER 2 DISCRETE ELEMENT METHOD (DEM) FRAMEWORK …………....9
2.1. Discrete Element Method(DEM) Approaches for Granular Matter ……………9
2.2. DEM Equation of Motion ……………………………………………………...12
2.2.1. Newton second’s law ……………………………………………………..12
2.2.2. Hertz-Mindlin contact model ……………………………………………..14
2.3. DEM Thermal Model ………………………………………………………….16
2.3.1. DEM model of the penetration of heat in granular assembly ……………...18
2.4. DEM implementation for heat transfer model of granular matter in a rotating drum ………………………………………………………………………………..20
2.4.1. The heat transfer mechanism from the wall to the balls ………………….23
2.4.2. The overall heat transfer coefficient ………………………………………25
2.4.3. The indirect heat transfer model of granular matter inside a rotating drum .26
2.5. Implementation of DEM for thermal model of rotating drum by PFC3D ……….27
2.5.1. Drum design and specification ……………………………………………30
2.5.2. Simulation step using PFC3D ……………………………………………...33
2.5.3. Setting parameters of particles using PFC3D ………………………………34
CHAPTER 3 RESULTS & DISCUSSION …………………………………………….36
3.1. Impact of Particle Ratio on The Average Temperature of Granular Flow Inside a Rotating Drum ……………………………………………………………………...36
3.2. The Effect of Drum Pattern on The Average Temperature of Granular Flow Inside a Rotating Drum ……………………………………………………………………46
3.3. The Influence of the Boundary Wall and Wall Pipe Resistance(ηw) on the Average Temperature of Granular Flow Inside a Rotating Drum ……………………………64
3.4. The Impact of the Filling Ratios on the Average Temperature of Granular Flow Inside a Rotating Drum …………………………………………………………......71
CHAPTER 4 CONCLUSION ………………………………………………………….77
REFERENCES ………………………………………………………………………...79
參考文獻 Alizadeh, E., Bertrand, F., Chaouki, J. (2014). Comparison of DEM Results and Lagrangian Experimental Data for the Flow and Mixing of Granules in a Rotating Drum. Aiche Journal 60, 60-75.
Batchelor, G.K., O’Brien, R.W. 1977. Thermal or electrical conduction through a granular material. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences 355, 313–333.
Bertrand, F., Leclaire, L. A., Levecque, G. (2005). DEM-based models for the mixing of granular materials. Chemical Engineering Science 60, 2517-2531.
Chang, C.H., (2018). Heat Transfer Experiments of Granular Medium in a Rotating Drum with Various Wall Roughness. Powder Technology Laboratory, ME-NCU, Zhongli.
Chaudhuri, B., Muzzio, F.J., Tomassone, M.S. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science 61, 6348-6360.
Chaudhuri, B., Muzzio, F.J., Tomassone, M.S. (2010). Experimentally validated computations of heat transfer in granular materials in rotary calciners. Powder Technology 198, 6–15.
Chen, K., Cole, J., Conger C., Draskovic J., Lohr,M. , Klein,K., Scheidemantel,T., Schiffer,P. (2006). Granular materials: Packing grains by thermal cycling. Nature 442, 257–257.
Chou, S.H., Liao, C.C., Hsiau, S.S. (2011). The effect of interstitial fluid viscosity on particle segregation in a slurry rotating drum. Physics of Fluids 23, 083301-1 - 083301-10.
Chung, Y. C., Ooi, J.Y. (2008). A study of influence of gravity on bulk behaviour of particulate solid, Particuology 6, 467–474.
Cleary, P. W. (2010). DEM prediction of industrial and geophysical particle flows. Particuology 8, 106-118.
Cleary, P.W., Sawley, M.L. (2002). DEM modelling of industrial granular flows: 3d case studies and the effect of particle chase on hopper discharge. Applied Mathematical Modelling 26, 89-111.
Cundall, P. A., Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique 29, 47-65.
Decker, N. A., Glicksman, L. R. (1981). Conduction heat transfer at the surface of bodies immersed in gas fluidized beds of spherical particles. AIChE Symposium Series 77 (208), 341 - 349.
Ding Y.L., Forster R.N., Seville J.P.K., Parker D.J. (2001). Some aspects of heat transfer in rolling mode rotating drums operated at low to medium temperatures, Powder Technology 121,168–181.
Emady, H.N., Anderson, K.V., Borghard, W.G., Muzzio, F.J., Glasser, B.J., Cuitino, A. (2016). Prediction of conductive heating time scales of particles in a rotary drum. Chemical Engineering Science 152, 45-54.
Emden, H. K., Wirtz, S., Simsek, E., Scherer, V. (2006). Modeling of granular flow and combined heat transfer in hoppers by the discrete element method (DEM). Journal of Pressure Vessel Technology 128, 439-444.
Fantozzi, F., Colantoni, S., Bartocci, P., and Desideri, U. (2007). Rotary kiln slow pyrolysisfor syngas and char production from biomass and waste. part I. working envelope of the reactor. Journal of Engineering for Gas Turbines and Power 129, 901–907.
Figueroa, I., Vargas, W.L., McCarthy, J.J. (2010). Mixing and heat conduction in rotating tumblers. Chemical Engineering Science 65, 1045–1054.
Gui. N., Fan J. (2015). Numerical study of heat conduction of granular particles in rotating wavy drums, International Journal Heat Mass Transfer 84, 740–751.
Gui, N., Yan, J., Xu, W., Ge, L., Wu, D., Ji, Z., Gao, J., Jiang, S., Yang, X. (2013). DEM simulation and analysis of particle mixing and heat conduction in a rotating drum. Chemical Engineering Science 97, 225-234.
Hadley, G.R. (1986). Thermal conductivity of packed metal powders. International Journal Heat Mass Transfer 29, 909–920.
Hertz, H. (1881). On the contact of elastic solids. Journal für die reine und ange-wandte Mathematik 92, 156-171.
Herz, F., Mitov, I., Specht, E., Stanev, R. (2012a). Influence of operational parameters and material properties on the contact heat transfer in rotary kilns. International Journal Heat Mass Transfer 55, 7941–7948.
Herz, F., Mitov, I., Specht, E., Stanev, R. (2012b). Experimental study of the contact heat transfer coefficient between the covered wall and solid bed in rotary drums. Chemical Engineering Science 82, 312–318.
Holm, R. (1967). Electric Contacts: Theory and Applications, fourth ed. Springer, New York.
Itasca. (2008). Particle Flow Codes in 3 Dimension (PFC3D) Version 4.0 Manu, Fourth Ed. Itasca Consulting Group Inc., Minnesota.
Jarray, A., Magnanimo, V. and Luding, S. (2019). Wet granular flow control through
liquid induced cohesion. Powder technology 341, 126–139.
Jiang, S., Ye, Y., Tan, Y., Liu, S., Liu, J., Zhang, H., Yang, D. (2018). Discrete element simulation of particle motion in ball mills based on similarity. Powder Technology 335, 91-102.
Kaneko, Y., Shiojima, T., Horio, M. (2000). Numerical analysis of particle mixing characteristics in a single helical ribbon agitator using DEM simulation. Powder Technology 108, 55–64.
Katterhagen, W.R., Curtis, J.S., Wassgren, C.R., Kong, A., Narayan, P.J., Hancock, B.C. (2007). Granular segregation in discharging cylindrical hoppers: A discrete element and experimental study. Chemical Engineering Science 62, 6423-6439.
Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S. (2012). Models, algorithms and validation for open source DEM and CFD–DEM. Program Computer Fluid Dynamic International Journal 12, 140–152.
Komossa, H., Wirtz, S., Scherer, V., Herz, F., Specht, E. (2015). Heat transfer in indirect heated rotary drums filled with monodisperse spheres: Comparison of experiments with DEM simulations, Powder Technology 286, 722–731.
Kuo, H. P., Knight, P. C., Parker, D. J., Seville, J. P. K. (2005). Solids circulation and axial dispersion of cohesion less particles in a V-mixer. Powder Technology 152, 133-140.
Kwapinska, M., Saage, G., Tsotsas, E. (2006). Mixing of particles in rotary drums: a comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technology 161, 69–78.
Kwapinska, M., Saage, G., Tsotsas, E. (2008). Continuous versus discrete modelling of heat transfer to agitated beds. Powder Technology 181, 331–342.
Langston, P.A., Tuzun, U., Heyes, D.M. (1995). Discrete element simulation of granular flow in 2d and 3d hoppers: Dependence of discharge rate and wall stress on particle interactions. Chemical Engineering Science 50, 967-987.
Li, S. Q., Ma, L. B., Wan, W., Yao, Q. (2005). A mathematical model of heat transfer in a rotary kiln thermo-reactor. Chemical Engineering Technology 28, 1480-1489.
Liao, C.C., Lan, H.W., Hsiau, S.S. (2016). Density-induced granular segregation in a slurry rotating drum. International Journal of Multiphase Flow 84, 1– 8.
Liu, X., Ge, G., Xiao, Y., Li, J. (2008). Granular flow in a rotating drum with gaps in the side wall. Powder Technology 182, 241 - 249.
Lybaert, P. (1987). Wall-particles heat transfer in rotating heat exchangers. International Journal of Heat Mass Transfer 30, 1663–1672.
Manickam, S., Shah, R., Tomei, J., Bergman, T., Chaudhuri, B. (2010). Investigating mixing in a multi-dimensional rotary mixer: Experiments and simulations. Powder Technology 201, 83–92.
Masson, S., Martinez, J. (2000). Effect of particle properties on silo flow and stresses from distinct element simulations. Powder Technology 109, 164 –178.
Meier, S.W., Lueptow, R.M., Ottino, J.M. (2007). A dynamical systems approach to mixing and segregation of granular materials in tumblers. Advances in Physics 56, 757 - 827.
Mellmann, J. (2001). The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technology 118(3), 251-270.
Mesnier, A., Rouabah, M., Cogné, C., Peczalski, R., Vessot-Crastes, S., Vacus, P., Andrieu, J. (2018). Contact heating of bi-dispersed milli-beads in a rotary drum. Mechanical segregation impact on temperature distribution and on heating kinetic analyzed by DEM simulation. Powder Technology 354, 240–246.
MiDi, G. D. R. (2004). On dense granular flows. The European Physical Journal E Soft Matter 14, 341-365.
Mindlin, R.D. (1949). Compliance of Elastic Bodies in Contact. Journal of Applied Mechanics 16, 259–268.
Mindlin, R.D., Deresiewicz, H. (1953). Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics 20, 327–344.
Morris, A.B., Pannala, S., Ma, Z., Hrenya, C.M. (2015). A conductive heat transfer model for particle flows over immersed surfaces, International Journal of Heat and Mass Transfer 89,1277–1289
Nafsun, A.I., Herz, F. (2016). Experiments on the temperature distribution in the solid bed of rotary drums. Applied Thermal Engineering 103, 1039–1047.
Nafsun, A.I., Herz, F., Specht, E., Komossa, H., Wirtz, S., Scherer, V., Liu, X. (2017). Thermal bed mixing in rotary drums for different operational parameters. Chemical Engineering Science 160, 346–353.
Nguyen, H.T., Cosson, B., Lacrampe, M.F., Krawczak, P. (2014). Numerical simulation on the flow and heat transfer of polymer powder in rotational molding. International Journal of Material Forming 8, 423–438.
Nozad, I., Carbonell, R.G., Whitaker, S. (1985). Heat conduction in multiphase systems-II: Experimental method and results for three-phase systems. Chemical Engineering Science 40, 857–863.
Ohmori, T., Miyahara, M., Okazaki, M. (1994). Heat transfer in a conductive-heating agitated dryer. Drying Technology 12, 299-328.
Osman, H. (2012). Granular Flow and Heat Transfer in a Screw Conveyor Heater: A Discrete Element Modeling Study. A Master Thesis of National University of Singapore, Singapore.
Radl, S., Kalvoda, E., Glasser, B.J., Khinast, J.G. (2010). Mixing characteristics of wet granular matter in a bladed mixer. Powder Technology 200, 171-189.
Rasouli, M. (2015). Dynamic of Cylinder Particles in A Rotating Drum Using Multiple Radioactive Particle Tracing. Doctoral Thesis, Universite De Montreal.
Ristow, G.H., Herrmann, H.J. (1995). Forces on the walls and stagnation zones in a hopper filled with granular material. Physical A: Statistical Mechanics and its Applications 213, 474-481.
Ristow, G. H. (1997). Critical Exponents for Granular Phase Transitions. Europhysics Letters 40 (6), 625 - 630.
Sakai, M. (2016). How should the discrete element method be applied in industrial systems? : A review, KONA Powder and Particle Journal 33, 169–178,
Schlnüder, E.U. (1971). Warmeubergang an bewegte kugel- schutengen bei kurzfristigem kontakt, Chemie Ingenieur Technik 43,651-654.
Schlünder, E.U., Mollekopf, N. (1984). Vacuum contact drying of free flowing mechanically agitated particulate material. Chemical Engineering and Processing: Process Intensification 18, 93-111.
Schmidt, R., Nikrityuk, P. A. (2011). Direct numerical simulation of particulate flows with heat transfer in a rotating cylindrical cavity. Philosophical Transactions of the Royal Society A 369, 2574–2583.
Shi, D., Vargas, W.L., McCarthy, J.J. (2008). Heat transfer in rotary kilns with interstitial gases. Chemical Engineering Science 63, 4506–4516.
Shimizu, Y., 2006. Three-dimensional simulation using fixed coarse-grid thermal- fluid scheme and conduction heat transfer scheme in distinct element method. Powder Technology 165, 140–15
Shonnard, D.R., Whitaker, S. (1989). The effective thermal conductivity for a point contact porous medium: An experimental study. International Journal of Heat and Mass Transfer 32, 503–512.
Stuart, D.M., Mitchell, D.A. (2003). Mathematical model of heat transfers during solid‐state fermentation in well‐mixed rotating drum bioreactors. Journal of Chemical Technology and Biotechnology 78, 1180–1192.
Sunkara, K.R., Herz, F., Specht, E. (2011). Thermal fluctuations and heat transfer measurements in an externally heated rotary cylinder. Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference (AJTEC2011-44573), Honolulu.
Suzzi, D., Toschkoff, G., Radl, S., Machold, D., Fraser, S. D., Glasser, B. J., Khinast, J. G. (2012). DEM simulation of continuous tablet coating: Effects of tablet shape and fill level on inter-tablet coating variability. Chemical Engineering Science 69, 107-121.
Thammavong, P., Debacq, M., Vitu, S., Dupoizat, M. (2011). Experimental apparatus for studying heat transfer in externally heated rotary kilns. Chemical Engineering Technology 34, 707–717.
Tsuji Y., Tanaka T., Ishida T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology 71, 239–250.
Vargas, W.L., McCarthy, J. (2002). Conductivity of granular media with stagnant interstitial fluids via thermal particle dynamics simulation. International Journal of Heat and Mass Transfer 45, 4847–4856.
Wang, Q., Liu, B., Wang, Z. (2020). Investigation of heat transfer mechanisms among particles in horizontal rotary retorts. Powder Technology 367, 82 – 96.
Wen C., Chang T. (1967). Particle to particle heat transfer in air fluidized beds, Proceedings of international symposium on fluidization, 491–506.
Wes, G.W.J., Drinkenburg, A. H., Stemerding, S. (1976). Heat transfer in a horizontal rotary drum reactor. Powder Technology 13, 185–192.
Xie, Q., Chen, Z., Hou, Q., Yu, A.B., Yang, R. (2017). DEM investigation of heat transfer in a drum mixer with lifters. Powder Technology 314, 175–181.
Yan, Z., Wilkinson, S. K., Stitt, E. H., Marigo, M. (2015). Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis. Computational Particle Mechanics 2, 283 – 299.
Yang, R.Y., Zou, R.P. and Yu, A.B. (2000). Computer simulation of the packing of fine particles. Physical Review 62, 3900 – 3908.
Yazdani, E., Hashemabadi, S.H. (2019). DEM simulation of heat transfer of binary-sized particles in a horizontal rotating drum. Granular Matter 21, 1- 11.
Yovanovich, M.M. (1967). Thermal contact resistance across elastically deformed spheres. Journal of Spacecraft Rocket 4, 119–122.
Yovanovich, M.M. (1965). Thermal contact conductance in a vacuum. Engineering Projects Laboratory Massachusetts Institute of Technology, Massachusetts.
Yun, T.S., Santamarina, J.C. (2008). Fundamental study of thermal conduction in dry soils. Granular Matter 10,197–207.
Zhu, H.P., Yu, A.B. (2004). Steady-state granular flow in a 3D cylindrical hopper with flat bottom using DEM simulation: microscopic analysis. Journal of Physics D: Applied Physics 37, 1497 – 1508.
Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B. (2007). Discrete particle simulation of particulate systems: Theoretical developments. Chemical Engineering Science 62, 3378–3396.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2021-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明