博碩士論文 107323021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.223.241.186
姓名 賴柏翰(Lai-Po Han)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 ZN型雙包絡蝸桿與螺旋齒輪接觸分析
(Tooth Contact Analysis of ZN-Type Double-Enveloping Worm and Helical Gear)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
★ 應用經驗模態分解法於正齒輪對之傳動誤差分析★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ 非接觸式章動減速電機結構設計與模擬
★ Helipoid齒輪接觸特性研究與最佳化分析★ 高轉速正齒輪之多目標最佳化與動態特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 蝸桿蝸輪組是屬於空間交錯軸(crossed-axis)傳動機構,具有高傳動減速比,體積較小、噪音低、結構緊湊以及承載能力大等特點,而雙包絡蝸桿蝸輪組可以比蝸桿蝸輪組更高的接觸比(Contact Ratio),定位精度及負載的傳遞也較好。
  本研究針對ZN型雙包絡蝸桿及螺旋齒輪的搭配,從設計、模擬及分析進行一系列之研究,並有系統的建立ZN型雙包絡蝸桿及螺旋齒輪的研究流程。首先根據齒輪原理(Theory of Gearing),採用軌跡法利用齒輪型車刀推導出ZN型雙包絡蝸桿齒面數學模式,再利用齒條刀與嚙合方程式推導出具轉位修整之螺旋齒輪齒面數學模式。根據推導出之ZN型雙包絡蝸桿與螺旋齒輪先進行干涉檢查,透過蝸桿包絡半徑參數修整再進行齒面接觸分析(Tooth Contact Analysis, TCA),探討不同包絡半徑下的傳動誤差與接觸軌跡。最後根據齒面接觸分析的結果找出最佳的參數,進行有限元素法應力分析,並計算螺旋齒輪各齒間負載分布及嚙合效率。
摘要(英) Worm gear set is a spatial crossed-axis transmission mechanism, which has the characteristics of high reduction ratio, compact, low noise, compact structure and large load carrying capacity. The double-enveloping worm gear set has a higher contact ratio than the cylindrical worm gear set. The accuracy and load transfer are also better.
This research aims at the study of the combination of ZN-type double-enveloping worm and helical gear, including design, simulation, and analysis. Firstly, the Theory of Gearing is used to derived the mathematical model of ZN-type double-enveloping worm by using the gear-type cutter. Then, the helical gear with profile shifting is derived. Based on the model of ZN-type double-enveloping worm and helical gear, the interference was inspected, and the worm enveloping radius was adjusted. Tooth contact analysis was used to explore the transmission error and contact path under various enveloping radius of the worm. According to the results of the tooth contact analysis, the best parameters are found to perform the finite element stress analysis. estimating the load distribution and meshing efficiency between the helical gear teeth.
關鍵字(中) ★ ZN型雙包絡蝸桿
★ 齒面接觸分析
★ 有限元素分析
★ 傳動誤差
★ 接觸軌跡
關鍵字(英) ★ ZN-Type Double-Enveloping Worm
★ Tooth Contact Analysis
★ Finite Element Analysis
★ Contact Path
★ Transmission Error
論文目次 摘要 i
Abstact ii
致謝 iii
圖目錄 vi
表目錄 ix
符號對照表 x
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究目的 9
1.4 論文架構 10
第2章 ZN型雙包絡蝸桿齒面數學模式 11
2.1 齒輪型直邊車刀法向外型數學模式 11
2.2 ZN型雙包絡蝸桿數學模型建立 14
2.3 ZN型雙包絡蝸桿電腦繪圖 19
第3章 螺旋齒輪齒面數學模式 20
3.1 螺旋齒條刀數學模式 20
3.2 三維假想齒條刀數學模式 21
3.3 修整型螺旋齒輪之數學模式 25
3.4 螺旋齒輪電腦繪圖 27
第4章 齒面接觸分析 29
4.1 齒面接觸分析方程式 29
4.2 傳動誤差分析 30
4.3 組裝誤差分析 30
4.4 接觸齒印分析 34
4.5 參數設計流程 38
4.6 齒面接觸分析(理想狀態,無組裝誤差) 41
4.7 齒面接觸分析(考慮組裝誤差) 49
4.8 結論 56
第5章 負載下齒面接觸分析 57
5.1 自動化網格分割程式 57
5.2 有限元素分析設定 59
5.3 有限元素分析結果 61
5.4 結論 65
第6章 結論與未來展望 66
6.1 結論 66
6.2 未來展望 68
參考文獻 69
參考文獻 [1] F. L. Litvin, “Theory of gearing,” NASA Reference Publication 1212, Washinton D. C., 1989.
[2] F. L. Litvin and A. Fuentes, “Gear geometry and applied theory,” Cambridge University Press, 2nd edition, New York, 2004.
[3] F. L. Litvin and J. Zhang, “Topology of modified helical gears and tooth contact analysis (TCA) program,” DTIC Document, 1989.
[4] F. L. Litvin, I. Gonzalez-Perez, A. Fuentes, K. Hayasaka, and K. Yukishima, “Topology of modified surfaces of involute helical gears with line contact developed for improvement of bearing contact, reduction of transmission errors, and stress analysis,” Mathematical and Computer Modelling, vol. 42, pp. 1063-1078, 2005.
[5] C. B. Tsay, “Helical gears with involute shaped teeth: geometry, computer simulation, tooth contact analysis, and stress analysis,” ASME Journal of Mechanisms Design, Vol. 110, pp. 482-491, 1988.
[6] 王志根,具線性齒頂修整之螺旋齒輪接觸特性研究,國立中央大學光機電工程研究所,碩士論文,民國一百零五年。
[7] Y. C. Chen and C. B. Tsay, “Contact ratios and transmission errors of a helical gear set with involute-teeth pinion and modified-circular-arc-teeth gear,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 44, pp. 867-874, 2001.
[8] Y. C. Chen and C. B. Tsay, “Stress analysis of a helical gear set with localized bearing contact,” Finite Elements in Analysis and Design, Vol. 38, pp. 707-723, 2002.
[9] V. Simon, “Computer aided manufacture of high precision hob,” International
Journal of machine Tools & Manufacture, Vol. 28, No. 4, pp. 443-452, 1988.
[10] V. Simon, “Grinding wheel profile for hob relief grinding,” Journal of Mechanical
Design, Vol. 104, pp. 731-742, 1982.
[11] H. S. Fang and C. B. Tsay, “Mathematical model and bearing contacts of the
  ZN-type worm gear sets cut by oversize hob cutters,” Mechanism and Machine
  Theory, Vol. 35, No. 12, pp. 1689-1708, 2000.
[12] H. S. Fang and C. B. Tsay, “Mathematical model and bearing contacts of the
  ZK-type worm gear set cut by oversize hob cutters,” Journal of Mechanism and
  Machine Theory, Vol. 31, No. 3, pp. 271-282, 1996.
[13] H. S. Fang and C. B. Tsay, “Effects of the hob cutter regrinding and setting on
  ZE-type worm gear manufacture,” Journal of Mechanism and Machine Theory, Vol.
  36, No. 10, pp. 1123-1135, 1996.
[14] B. W. Bair and C. B. Tsay, “ZK-type dual-lead worm and worm-gear drives:
  contact teeth, contact ratio and kinematic Errors,” ASME Journal of Mechanical
  Design, Vol. 120, pp. 422-428, 1998.
[15] 白炳文,ZK型雙導程蝸桿蝸輪之特性研究,國立交通大學機械工程研究所,博士論文,民國八十七年。
[16] C. F. Huai and Y. P. Zhao, “Variable height modification of TA worm drive,” Journal of Mechanical Engineening Science,Vol. 233, pp. 227-243, 2018.
[17] Y. H. Chen, Y. Chen, W. J. Luo and G. G. Zhang, “Theoretical and experimental investigation of accurately turning the TI worm tooth surface,”JSME Journal of Advanced Mechanical Design,Vol. 9, No.2, 2015.
[18] Y. P. Zhao, D. H. Su, Z. Zhang, “Meshing analysis and technological parameters selection of dual tori double-enveloping toroidal worm drive,” Mechanism and Machine Theory, Vol. 45, pp. 1269-1285, 2010.
[19] K. Y. Chen and C. B. Tsay, “Mathematical model and worm wheel tooth working surfaces of the ZN-type hourglass worm gear set,” Mechanism and Machine Theory, Vol. 44, pp. 1701-1712, 2009.
[20] J. G. Wang , Y. H. Chen, X. Q. Deng and Z. X. Liu, “A review of backlash-adjustable worm drives,” Journal of Xihua University · Natural Science, Vol. 33, No. 4, 2014.
[21] 周良墉,環面蝸桿的曲率修形原理,機械工程學報,第38卷,第2期,2002。
[22] D. T. Qin and G. G. Zhang, “Study of tooth contact and kinematic precision
on cone-generated double enveloping worm gearing,” Journal of Chongqing
University, Vol. 16, No. 1, 1993.
[23] 陳宗賢,非對稱齒形之蝸桿蝸輪組之特性分析,國立交通大學機械工程研究所,碩
士論文,民國九十六年。
[24] Z. D. Zheng, Y. H. Chen, B. K. Chen , X. Du and C. Y. Li, “Meshing performance investigations on a novel point-contact hourglass worm drive with backlash-adjustable,” Mechanism and Machine Theory, Vol. 149, 2020.
[25] W. Shi, D. Qin and W. Xu, “Meshing control of the double-enveloping hourglass
worm gearing under the conditions of existing the errors and the load,” Mechanism and Machine Theory, Vol. 39, pp. 61-74, 2003.
[26] Y. Q. Zhang and G. H. Zhang, “Analysis on stress distribution and influencing factors of planar duoble enveloping hourglass worm gearing,” China Mechanical Engineering, pp. 1135-1138, 2011.
[27] AGMA 6022-C93,“Design manual for cylindrical worm gearing,” American Gear Manufacturers Association, America, 1993.
[28] Stephen P. Radzevich, “Dudley’s handbook of practical gear design and manufacture,” Taylor & Francis Group CRC Press, London New York, 2012.
[29] Childs, R. N. Peter, “Mechanical design engineering handbook,” Butterworth-Heinemann Press, 2014.
[30] 小原敏治,KHK齒輪技術資料,小原歯車工業株式会社(KHK),埼玉縣川口市,2006。
指導教授 陳怡呈(Chen-Yi Cheng) 審核日期 2021-1-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明