參考文獻 |
王聖翔 (2007), 亞州生質燃燒氣膠對對區域區域環境環境與大氣輻射大氣輻射衝擊及對氣象場的反饋作用, 國立中央大學, 大氣物理研究所.
加拿大英屬哥倫比亞大學氣膠實驗室。摘自http://www.aerosol.mech.ubc.ca/research/soot-and-nanoparticles/
林正直 (2017). 春季大氣環流對東南亞氣膠傳輸之影響. 大氣科學學系, 國立中央大學.
林能暉,蔡錫祺,王家麟,李崇德,許桂榮,彭啟明,王聖翔 (2012), 鹿林山背景測站科技研究及操作維護期末報告, 行政院環境保護署.
林能暉,蔡錫祺,王家麟,李崇德,許桂榮,王聖翔,蕭大智,歐陽長風,張學銘 (2020), 鹿林山背景測站科技研究及操作維護計畫專案工作計書, 行政院環境保護署.
黃翔昱(2020), 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋, 大氣科學學系, 國立中央大學.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529-552, 10.5194/essd-11-529-2019, 2019.
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer, Journal of Atmospheric and Oceanic Technology, 13, 967-986, 10.1175/1520-0426(1996)013<0967:Pcoahs>2.0.Co;2, 1996.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York1983.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol Science and Technology, 40, 27-67, 10.1080/02786820500421521, 2006.
Chang, H. and Charalampopoulos, T.: Determination of the Wavelength Dependence of Refractive Indices of Flame Soot, Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 430, 577-591, 10.1098/rspa.1990.0107, 1990.
Chen, S.-C., Hsu, S.-C., Tsai, C.-J., Chou, C. C. K., Lin, N.-H., Lee, C.-T., Roam, G.-D., and Pui, D. Y. H.: Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia, Atmospheric Environment, 78, 154-162, https://doi.org/10.1016/j.atmosenv.2012.05.029, 2013.
Chen, Y. C., Wang, S. H., Min, Q., Lu, S., Lin, P. L., Lin, N. H., Chung, K. S., and Joseph, E.: Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment, Atmos. Chem. Phys., 21, 4487-4502, 10.5194/acp-21-4487-2021, 2021.
Cho, C., Kim, S.-W., Lee, M., Lim, S., Fang, W., Gustafsson, Ö., Andersson, A., Park, R. J., and Sheridan, P. J.: Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia, Atmospheric Environment, 212, 65-74, https://doi.org/10.1016/j.atmosenv.2019.05.024, 2019.
Chylek, P., Lee, J. E., Romonosky, D. E., Gallo, F., Lou, S., Shrivastava, M., Carrico, C. M., Aiken, A. C., and Dubey, M. K.: Mie Scattering Captures Observed Optical Properties of Ambient Biomass Burning Plumes Assuming Uniform Black, Brown, and Organic Carbon Mixtures, Journal of Geophysical Research: Atmospheres, 124, 11406-11427, https://doi.org/10.1029/2019JD031224, 2019.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, Journal of Geophysical Research: Atmospheres, 105, 20673-20696, https://doi.org/10.1029/2000JD900282, 2000.
Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., and Slutsker, I.: Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, Journal of Geophysical Research: Atmospheres, 105, 9791-9806, https://doi.org/10.1029/2000JD900040, 2000.
Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations, Journal of the Atmospheric Sciences, 59, 590-608, 10.1175/1520-0469(2002)059<0590:Voaaop>2.0.Co;2, 2002.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975-1018, 10.5194/amt-4-975-2011, 2011.
Eck, T., Holben, b., Reid, J., Dubovik, O., Smirnov, A., Neill, Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104349, 333-331, 10.1029/1999JD900923, 1999.
Esteve, A. R., Highwood, E. J., Morgan, W. T., Allen, G., Coe, H., Grainger, R. G., Brown, P., and Szpek, K.: A study on the sensitivities of simulated aerosol optical properties to composition and size distribution using airborne measurements, Atmospheric Environment, 89, 517-524, https://doi.org/10.1016/j.atmosenv.2014.02.063, 2014.
Eyre, J.: Inversion methods for satellite sounding data, 2002.
Fan, J., Shao, L., Hu, Y., Wang, J., Wang, J., and Ma, J.: Classification and chemical compositions of individual particles at an eastern marginal site of Tibetan Plateau, Atmospheric Pollution Research, 7, 833-842, https://doi.org/10.1016/j.apr.2016.04.007, 2016.
Furuuchi, M., Fissan, H., and Horodecki, J.: Evaporation behavior of volatile particles on fibrous filter flushed with particle-free dry air, Powder Technology, 118, 171-179, 10.1016/S0032-5910(01)00308-4, 2001.
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R. R., Thompson, A. M., and Schafer, J. S.: An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, Journal of Geophysical Research: Atmospheres, 117, https://doi.org/10.1029/2012JD018127, 2012.
Gliß, J., Mortier, A., Schulz, M., Andrews, E., Balkanski, Y., Bauer, S. E., Benedictow, A. M. K., Bian, H., Checa-Garcia, R., Chin, M., Ginoux, P., Griesfeller, J. J., Heckel, A., Kipling, Z., Kirkevåg, A., Kokkola, H., Laj, P., Le Sager, P., Lund, M. T., Lund Myhre, C., Matsui, H., Myhre, G., Neubauer, D., van Noije, T., North, P., Olivié, D. J. L., Rémy, S., Sogacheva, L., Takemura, T., Tsigaridis, K., and Tsyro, S. G.: AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations, Atmos. Chem. Phys., 21, 87-128, 10.5194/acp-21-87-2021, 2021.
Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution, Atmos. Chem. Phys., 9, 1263-1277, 10.5194/acp-9-1263-2009, 2009.
Hale, G. M. and Querry, M. R.: Optical Constants of Water in the 200-nm to 200-μm Wavelength Region, Appl. Opt., 12, 555-563, 10.1364/AO.12.000555, 1973.
Helin, A., Virkkula, A., Backman, J., Pirjola, L., Sippula, O., Aakko-Saksa, P., Väätäinen, S., Mylläri, F., Järvinen, A., Bloss, M., Aurela, M., Jakobi, G., Karjalainen, P., Zimmermann, R., Jokiniemi, J., Saarikoski, S., Tissari, J., Rönkkö, T., Niemi, J. V., and Timonen, H.: Variation of Absorption Ångström Exponent in Aerosols From Different Emission Sources, Journal of Geophysical Research: Atmospheres, 126, e2020JD034094, https://doi.org/10.1029/2020JD034094, 2021.
Hess, M., Koepke, P., and Schult, I.: Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bulletin of the American Meteorological Society, 79, 831, 10.1175/1520-0477(1998)079<0831:Opoaac>2.0.Co;2, 1998.
Hewison, T. J.: 1D-VAR Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer, IEEE Transactions on Geoscience and Remote Sensing, 45, 2163-2168, 10.1109/TGRS.2007.898091, 2007.
Hitzenberger, R., Jennings, S. G., Larson, S. M., Dillner, A., Cachier, H., Galambos, Z., Rouc, A., and Spain, T. G.: Intercomparison of measurement methods for black carbon aerosols, Atmospheric Environment, 33, 2823-2833, https://doi.org/10.1016/S1352-2310(98)00360-4, 1999.
Hsiao, T.-C., Chen, W.-N., Ye, W.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lee, C.-T., Chuang, M.-T., Pantina, P., and Wang, S.-H.: Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants, Atmospheric Environment, 150, 366-378, https://doi.org/10.1016/j.atmosenv.2016.11.031, 2017.
Hsu, C.-H. and Cheng, F.-Y.: Synoptic Weather Patterns and Associated Air Pollution in Taiwan, Aerosol and Air Quality Research, 19, 1139-1151, 10.4209/aaqr.2018.09.0348, 2019.
IPCC, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 10.1017/CBO9781107415324, 2013.
Jarzembski, M. A., Norman, M. L., Fuller, K. A., Srivastava, V., and Cutten, D. R.: Complex refractive index of ammonium nitrate in the 2–20-μm spectral range, Appl. Opt., 42, 922-930, 10.1364/AO.42.000922, 2003.
Jeong, U., Tsay, S.-C., Giles, D. M., Holben, B. N., Swap, R. J., Abuhassan, N., and Herman, J. R.: The SMART-s Trace Gas and Aerosol Inversions: I. Algorithm Theoretical Basis for Column Property Retrievals, Journal of Geophysical Research: Atmospheres, 125, e2019JD032088, https://doi.org/10.1029/2019JD032088, 2020.
Jeong, U., Kim, J., Ahn, C., Torres, O., Liu, X., Bhartia, P. K., Spurr, R. J. D., Haffner, D., Chance, K., and Holben, B. N.: An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations, Atmos. Chem. Phys., 16, 177-193, 10.5194/acp-16-177-2016, 2016.
Jiang, B., Xia, D., and Zhang, X.: A multicomponent kinetic model established for investigation on atmospheric new particle formation mechanism in H 2 SO 4 -HNO 3 -NH 3 -VOC system, Science of The Total Environment, 616-617, 10.1016/j.scitotenv.2017.10.174, 2017.
Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang, R.: New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate, Journal of Geophysical Research: Atmospheres, 124, 7098-7146, https://doi.org/10.1029/2018JD029356, 2019.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., and Hsu, S.-P.: The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan, Atmospheric Environment, 45, 5784-5794, https://doi.org/10.1016/j.atmosenv.2011.07.020, 2011.
Levenberg, K.: A METHOD FOR THE SOLUTION OF CERTAIN NON-LINEAR PROBLEMS IN LEAST SQUARES, Quarterly of Applied Mathematics, 2, 164-168, 1944.
Levin, E. J. T., McMeeking, G. R., Carrico, C. M., Mack, L. E., Kreidenweis, S. M., Wold, C. E., Moosmüller, H., Arnott, W. P., Hao, W. M., Collett Jr., J. L., and Malm, W. C.: Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME), Journal of Geophysical Research: Atmospheres, 115, https://doi.org/10.1029/2009JD013601, 2010.
Liou, K.-N.: An introduction to atmospheric radiation [electronic resource] / K.N. Liou, 2nd ed., International geophysics series ; v. 84, Academic Press, Amsterdam ;2002.
Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M.: The absorption Ångström exponent of black carbon: from numerical aspects, Atmos. Chem. Phys., 18, 6259-6273, 10.5194/acp-18-6259-2018, 2018.
Liu, D., He, C., Schwarz, J. P., and Wang, X.: Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere, npj Climate and Atmospheric Science, 3, 40, 10.1038/s41612-020-00145-8, 2020.
Liu, C., Li, J., Yin, Y., Zhu, B., and Feng, Q.: Optical properties of black carbon aggregates with non-absorptive coating, Journal of Quantitative Spectroscopy and Radiative Transfer, 187, 443-452, https://doi.org/10.1016/j.jqsrt.2016.10.023, 2017.
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W.: T-matrix computations of light scattering by nonspherical particles: A review, Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535-575, https://doi.org/10.1016/0022-4073(96)00002-7, 1996.
Müller, D., Wandinger, U., and Ansmann, A.: Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory, Appl. Opt., 38, 2346-2357, 10.1364/AO.38.002346, 1999.
Müller, T., Henzing, J. S., de Leeuw, G., Wiedensohler, A., Alastuey, A., Angelov, H., Bizjak, M., Collaud Coen, M., Engström, J. E., Gruening, C., Hillamo, R., Hoffer, A., Imre, K., Ivanow, P., Jennings, G., Sun, J. Y., Kalivitis, N., Karlsson, H., Komppula, M., Laj, P., Li, S. M., Lunder, C., Marinoni, A., Martins dos Santos, S., Moerman, M., Nowak, A., Ogren, J. A., Petzold, A., Pichon, J. M., Rodriquez, S., Sharma, S., Sheridan, P. J., Teinilä, K., Tuch, T., Viana, M., Virkkula, A., Weingartner, E., Wilhelm, R., and Wang, Y. Q.: Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops, Atmos. Meas. Tech., 4, 245-268, 10.5194/amt-4-245-2011, 2011.
Nguyen, L. S. P., Sheu, G.-R., Chang, S.-C., and Lin, N.-H.: Effects of temperature and relative humidity on the partitioning of atmospheric oxidized mercury at a high-altitude mountain background site in Taiwan, Atmospheric Environment, 261, 118572, https://doi.org/10.1016/j.atmosenv.2021.118572, 2021.
Poudel, S., Fiddler, M., Smith, D., Flurchick, K., and Bililign, S.: Optical Properties of Biomass Burning Aerosols: Comparison of Experimental Measurements and T-Matrix Calculations, Atmosphere, 8, 228, 10.3390/atmos8110228, 2017.
Qi, H.: Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm, Thermal Science, 19, 10.2298/TSCI140319103Q, 2014.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.: Global aerosol climatology from the MODIS satellite sensors, Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2007JD009661, 2008.
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, Inverse Methods for Atmospheric Sounding, 10.1142/3171,
Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific2000.
Saathoff, H., Naumann, K. H., Schnaiter, M., Schöck, W., Möhler, O., Schurath, U., Weingartner, E., Gysel, M., and Baltensperger, U.: Coating of soot and (NH4)2SO4 particles by ozonolysis products of α-pinene, Journal of Aerosol Science, 34, 1297-1321, https://doi.org/10.1016/S0021-8502(03)00364-1, 2003.
Sarpong, E., Smith, D., Pokhrel, R., Fiddler, M. N., and Bililign, S.: Refractive Indices of Biomass Burning Aerosols Obtained from African Biomass Fuels Using RDG Approximation, Atmosphere, 11, 62, 2020.
Schmeisser, L., Andrews, E., Ogren, J. A., Sheridan, P., Jefferson, A., Sharma, S., Kim, J. E., Sherman, J. P., Sorribas, M., Kalapov, I., Arsov, T., Angelov, C., Mayol-Bracero, O. L., Labuschagne, C., Kim, S. W., Hoffer, A., Lin, N. H., Chia, H. P., Bergin, M., Sun, J., Liu, P., and Wu, H.: Classifying aerosol type using in situ surface spectral aerosol optical properties, Atmos. Chem. Phys., 17, 12097-12120, 10.5194/acp-17-12097-2017, 2017.
Schuster, G. L., Dubovik, O., and Holben, B. N.: Angstrom exponent and bimodal aerosol size distributions, Journal of Geophysical Research: Atmospheres, 111, https://doi.org/10.1029/2005JD006328, 2006.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., and Lee, C.-T.: Lulin Atmospheric Background Station: A New High-Elevation Baseline Station in Taiwan, Earozoru Kenkyu, 24, 84-89, 10.11203/jar.24.84, 2009.
Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375-3411, 10.5194/amt-13-3375-2020, 2020.
Spindler, C., Riziq, A. A., and Rudich, Y.: Retrieval of Aerosol Complex Refractive Index by Combining Cavity Ring Down Aerosol Spectrometer Measurements with Full Size Distribution Information, Aerosol Science and Technology, 41, 1011-1017, 10.1080/02786820701682087, 2007.
Stamnes, K., Tsay, S. C., Wiscombe, W., and Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502-2509, 10.1364/AO.27.002502, 1988.
Stuke, S.: Characterizing thin clouds using aerosol optical depth information, 2016.
Sumlin, B. J., Heinson, W. R., and Chakrabarty, R. K.: Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities, Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 127-134, https://doi.org/10.1016/j.jqsrt.2017.10.012, 2018.
Trenberth, K. E. and Fasullo, J. T.: Global warming due to increasing absorbed solar radiation, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL037527, 2009.
Valenzuela, A., Reid, J. P., Bzdek, B. R., and Orr-Ewing, A. J.: Accuracy Required in Measurements of Refractive Index and Hygroscopic Response to Reduce Uncertainties in Estimates of Aerosol Radiative Forcing Efficiency, Journal of Geophysical Research: Atmospheres, 123, 6469-6486, https://doi.org/10.1029/2018JD028365, 2018.
Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U., and Whiteman, D. N.: Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding, Appl. Opt., 41, 3685-3699, 10.1364/AO.41.003685, 2002.
Wang, J., McNeill, V. F., Collins, D. R., and Flagan, R. C.: Fast Mixing Condensation Nucleus Counter: Application to Rapid Scanning Differential Mobility Analyzer Measurements, Aerosol Science and Technology, 36, 678-689, 10.1080/02786820290038366, 2002.
Womack, C. C., Manfred, K. M., Wagner, N. L., Adler, G., Franchin, A., Lamb, K. D., Middlebrook, A. M., Schwarz, J. P., Brock, C. A., Brown, S. S., and Washenfelder, R. A.: Complex refractive indices in the ultraviolet and visible spectral region for highly absorbing non-spherical biomass burning aerosol, Atmos. Chem. Phys., 21, 7235-7252, 10.5194/acp-21-7235-2021, 2021.
Wu, Y., Cheng, T., Liu, D., Allan, J. D., Zheng, L., and Chen, H.: Light Absorption Enhancement of Black Carbon Aerosol Constrained by Particle Morphology, Environmental Science & Technology, 52, 6912-6919, 10.1021/acs.est.8b00636, 2018.
Zaveri:Examining the Morphology of Black Carbon Particles。2014年1月31,摘自 https://asr.science.energy.gov/news/program-news/post/5279 |