以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:130 、訪客IP:18.225.98.100
姓名 周子睿(Zih-Jui Chou) 查詢紙本館藏 畢業系所 大氣科學學系 論文名稱 結合衛星近海表面風場與多雷達觀測對反演劇烈天氣系統之動力結構的影響:OSSE實驗 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究主要目的為同化衛星近海表面風場以改善洋面低層大氣之三維 動力場,因此設計一系列實驗組檢驗其帶來之效益。透過觀測系統模擬實 驗(Observing Systems Simulation Experiment, OSSE),並利用多都卜勒雷達 風 場 合 成 方 法 (WInd Synthesis System using Doppler Measurement, WISSDOM),以數學變分法極小化各項約束條件以反演三維風場,故設計 二理想個案探討同化衛星近海表面風場並搭配雷達觀測以檢驗對底層三維 風場之影響,第一個是2013年06月23日在台灣南部外海之西南氣流個案, 第二個是2017年06月01日在台灣北部外海之梅雨系統個案。
西南氣流個案結果說明同化衛星觀測風向及風速能大幅改善第一層水 平風場,並將其資訊向上傳遞至較高層大氣;梅雨系統個案則顯示只同化 衛星觀測風速對風速能夠大幅改善,但對底層大氣改善程度有限。從二理 想個案指出同化衛星觀測點數量越高,改善底層風場的效果越佳。
本研究的優點是新增同化衛星觀測方法並改善低層大氣動力結構。並 期望未來能探討衛星觀測對熱動力場及數值天氣預報的影響。摘要(英) The objective of this study is to investigate the impact of assimilation near ocean surface wind field through a series of experiments. An advanced scheme had been developed called WInd Synthesis System used to Doppler Measurements (WISSDOM) is applied to combine near ocean surface wind field with radar data through OSSE (Observing Systems Simulation Experiment) tests. The concept is based on the variational analysis, which can minimize the cost function to obtain the complete three-dimensional wind field. Two OSSEs are utilized: one is the southwest moonson case on 23 June, 2013 in southern Taiwan offshore, the other is a mei-yu frontal system on 01 June, 2017 passing northern Taiwan offshore.
Results of first case indicate that assimilating both wind speed and wind direction by satellite data has a great ability to improve the three-dimensional wind field at lower atmosphere, then transport the correct information to higher levels. Second case demonstrates that only assimilating speed by satellite data can make the wind speed better, but it has limited effect on wind direction at bottom atmosphere. The more observation data are utilized, the better effect at bottom atmosphere from two cases.
The advantage of this research is assimilating satellite data to improve the dynamic structure at lower atmosphere. Future objectives are to investigate the impact of satellite data on retrieving the thermodynamic field and the performance of numerical weather prediction.關鍵字(中) ★ 徑向風
★ 天氣預報模式
★ 近海表面風場關鍵字(英) ★ Radial Wind
★ WRF(Weather Research and Forecasting model)
★ Near Sea Surface Wind論文目次 中文摘要 ....................................................................................................................................i
Abstract ....................................................................................................................................ii
目錄 ...........................................................................................................................................v
表目錄 .....................................................................................................................................vii
圖目錄 .....................................................................................................................................vii
第一章 緒論 .......................................................................................................................1
1.1 前言 ...........................................................................................................................1
1.2 文獻回顧 ...................................................................................................................2
1.3 研究動機與目的 .......................................................................................................3
第二章 使用資料與研究方法...........................................................................................5
2.1 虛擬觀測資料 ...........................................................................................................5
2.1.1 雷達觀測 ...............................................................................................................5
2.1.2 衛星近海表面觀測風場 .......................................................................................6
2.1.3 地面測站 ...............................................................................................................9
2.1.4 探空資料 ...............................................................................................................9
2.2 多都卜勒氣象雷達風場合成 (WISSDOM)..........................................................10
2.2.1 價值函數(cost function)......................................................................................10
2.2.2 徑向風幾何關係式 ............................................................................................. 11
2.2.3 背景風場 .............................................................................................................12
2.2.4 連續方程式 .........................................................................................................13
2.2.5 垂直渦度方程式 .................................................................................................13
2.2.6 Laplacian 平滑項 ................................................................................................14
2.2.7 地面測站與衛星近海表面觀測 .........................................................................14
2.2.8 地面測站與衛星資料結合雷達資料 .................................................................17
2.3 沉浸邊界法(IMMERSED BOUNDARY METHOD) .......................................................17
2.4 校驗方法 .................................................................................................................18
第三章 西南氣流個案風場反演及分析.........................................................................20
3.1 模式模擬 .................................................................................................................20
3.2 虛擬真實大氣與背景風場 .....................................................................................20
vi
3.2.1 True Run(虛擬真實大氣)................................................................................... 20
3.2.2 背景風場............................................................................................................. 21
3.3 實驗設計與結果..................................................................................................... 21
3.3.1 影響半徑(R, ")敏感度測試............................................................................... 21
3.3.2 三維風場反演實驗設計..................................................................................... 22
3.3.3 價值函數(cost function) ..................................................................................... 23
3.3.4 第一層(Z=1,高度 10 公尺)水平風場風向、風速校驗 .................................... 23
3.3.5 第一層(Z=1)分析場增量 ................................................................................... 24
3.3.6 第一層(Z=1)洋面分析點結果校驗 ................................................................... 24
3.3.7 第一層(Z=1)分析點結果之散點密度圖 ........................................................... 25
3.3.8 垂直方向輻合輻散及垂直速度校驗................................................................. 25
3.3.9 垂直方向分數校驗............................................................................................. 26
3.3.10 地面測站校驗..................................................................................................... 27
第四章 梅雨個案風場反演及分析................................................................................. 28
4.1 模式模擬................................................................................................................. 28
4.2 虛擬真實大氣與背景風場..................................................................................... 28
4.2.1 True Run(虛擬真實大氣)................................................................................... 29
4.2.2 背景風場............................................................................................................. 29
4.3 實驗設計與結果..................................................................................................... 29
4.3.1 影響半徑(R, ")敏感度測試............................................................................... 29
4.3.2 三維風場反演實驗設計..................................................................................... 30
4.3.3 價值函數(cost function) ..................................................................................... 31
4.3.4 第一層(Z=1,高度 10 公尺)水平風場風向、風速校驗 .................................... 31
4.3.5 第一層(Z=1)分析場增量 ................................................................................... 32
4.3.6 第一層(Z=1)洋面分析點結果校驗 ................................................................... 32
4.3.7 第一層(Z=1)分析點結果之散點密度圖 ........................................................... 33
4.3.8 垂直方向分數校驗............................................................................................. 33
第五章 結語與未來展望................................................................................................. 35
5.1 結語......................................................................................................................... 35
5.2 未來展望................................................................................................................. 36
參考文獻................................................................................................................................. 38
附表......................................................................................................................................... 43
附圖......................................................................................................................................... 49參考文獻 鄧詠霖,2015: 利用雷達觀測與反演變數改善模式定量降水預報之能力- 2008 年西南氣
流 IOP#8 個案分析。國立中央大學大氣物理所碩士論文,1-95。
黃熠程,2017: 四維變分資料同化系統與衛星資料整合以重建台灣與周圍地區的高解析
度氣象場。國立中央大學大氣物理所碩士論文,1-91。
鄭羽廷,2019: 同化雷達觀測與反演變數改善模式對流尺度降雨預報能力:探討 OSSE
與真實個案。國立中央大學大氣物理所碩士論文,1-92。
吳英璋,2019: 對 IBM_VDRAS 四維變分資料同化系統的改進以及在探討複雜地形上
劇烈降雨過程的應用:北台灣午後對流個分析,1-124。
Albergel, C., P. De Rosnay, C. Gruhier, J. Muñoz-Sabater, S. Hasenauer, L. Isaksen, Y. Kerr,
and W. Wagner, 2012: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ., 118, 215- 226.
Asharaf, S., D. Waliser, D. Posselt, C. Ruf, C. Zhang, and A. Putra, 2019: CYGNSS ocean surface wind validation in the tropics. J. Atmos. Ocean. Technol., 38, 711-724.
Belmonte-Rivas M., and A. Stoffelen, 2019: Characterizing ERA-interim and ERA5 surface wind biases using ASCAT. Ocean Sci., 15, 1–31.
Bentamy, A., 2008: Characterization of ASCAT measurements based on buoy QuikSCAT wind vector observations. Ocean Sci., 5, 77-101.
Berger, H., R. H. Langland, C. S. Velden, C. A. Reynolds, and P. M. Pauley, 2011: Impact of enhanced satellite-derived at-mospheric motion vector observations on numerical tropicalcyclone track forecasts in the western North Pacific duringTPARC/TCS-08. J. Appl. Meteor. Climatol., 50, 2309–2318.
38
Bi L., J. Jung, M. Morgan and L. Marshall, 2011: Assessment of assimilating ASCAT surface wind retrievals in the NCEP lobal data assimilation system. Mon. Wea. Rev., 139, 3405– 3421.
Chou, K.-H., C.-C. Wu, and S.-Z. Lin, 2013: Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J. Geophys. Res., 118, 9011-9021. Hersbach, H., 2007: Preparation for assimilation of surface-wind data from ASCAT at
ECMWF. ECMWF Research Department Memorandum.
Leidner, S. M., B. Annane, B. McNoldy, R. Hoffman, and R. Atlas, 2018: Variational analysis
of simulated ocean surface winds from the cyclone global navigation satellite system (CYGNSS) and evaluation using a regional OSSE. J. Atmos. Ocean. Technol., 35, 1571- 1584.
Liou, Y.-C., and Y.-J Chang, 2009: A variational multiple–Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval, Mon. Weather Rev., 137, 3992– 4010.
_____, S.-F. Chang, and J. Sun, 2012: An application of the Immersed Boundary Method for recovering the three-dimensional wind fields over complex terrain using multiple- Doppler radar data. Mon. Wea. Rev., 140, 1603-1619.
_____, J.-L. Chiou, W.-H. Chen, and H.-Y. Yu, 2014: Improving the model convective storm quantitative precipitation nowcasting by assimilating state variables retrieved from multiple-Doppler radar observations. Mon. Wea. Rev., 142, 4017–4035
_____, P.-C. Yang, and W.-Y. Wang, 2019: Thermodynamic recovery of the pressure and temperature fields over complex terrain using wind fields derived by multiple-Doppler radar synthesis. Mon. Wea. Rev., 147, 3844–3846.
Mayers, D., and C. S. Ruf, 2019: Tropical cyclone center fix using CYGNSS winds. J. Appl. Meteor. Climatol., 58, 1993-2003.
39
Montuori, A., P. De Ruggiero, M. Migliaccio, S. Pierini, and G. Spezie, 2013: X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling. Ocean Sci., 9, 121–132.
Morris, M., and C. S. Ruf, 2017: Determing tropical cyclone surface wind speed structure and intensity with the CYGNSS satellite constellation. J. Appl. Meteor. Climatol., 56, 1847- 1865.
Peterson, E. W. and J. P. Hennessey, 1978: On the use of power laws for estimates of wind power potential. J. Appl. Meteor Climatol., 17, 390–394.
Pu, Z., X. Li, and J. Sun, 2009: Impact of airborne Doppler radar data assimilation on the numerical simulation of intensity changes of Hurricane Dennis near a landfall. J. Atmos. Sci., 66, 3351-3365.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Dopper radar observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 131, 1663-1677.
Sun, J., and N. A. Crook, 1997: Dynamic and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiment. J. Atmos. Sci., 54, 1642-1661.
_____, and _____, 1998: Dynamic and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835-852.
_____, and _____, 2001: Real-time low-level wind and tempertature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.
_____, 2005a: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793-813.
40
_____, M. Chen, and Y. Yang, 2010: Frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project. Wea. Forecasting, 25, 1715-1735.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation forecasting using Doppler radar data, a cloud model with adjoint, and the Weather Research and Forecasting Model-Real case studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975-992.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, 2017: The development of a terrain-resolving scheme for the forward model and its adjoint in the four-dimensional Variational Doppler Radar Analysis System(VDRAS). Mon. Wea. Rev., 145, 289-306.
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789– 1807.
Tseng, Y., and J. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593–623.
Tsai, C. C., S.-C Yang, and Y.-C Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus A, 66, 21804.
Wagner, W., S. Hahn, R. Kidd, T. Melzer, Z. Bartalis, S. Hasenauer, J. Figa-Saldaña, P. de Rosnay, A. Jann, and S. Schneider, 2013: The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications, Meteorol. Z., 22, 5–33.
Wang, X., D. M. Barker, C. Synder, and T. M. Hamill, 2008a: A hybrid ETKF-3DVar data assimilation scheme for the WRF model. Part I: Oberving system simulation experiment. Mon. Wea. Rev., 136, 5116-5131.
Wu, T., H. Liu, S. J. Majumdar, C. S. Velden, and J. L. Anderson, 2014: Influence of assimilating satellite-derived atmospheric motion vector observations on numerical
41
analyses and forecasts of tropical cyclone track and intensity. Mon. Wea. Rev., 142, 49–
71.
Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768-788.
Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. Droegemeier, 2003: The Advanced Regional Prediction System(ARPS), strom-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139-170.
Zhao, K., X. Li, M. Xue, B. J.-D. Jou, and W.-C Lee, 2012: Shor-term forecasting throuh intermittent assimilation of data from Taiwan and mainland China coastal radars for Typhoon Meranti(2010) at landfall. J. Geophys. Res., 117, D06108.
Zhang, S., Z. Pu, D.J. Posselt, and R. Atlas, 2017: Impact of CYGNSS ocean surface wind speeds on numerical simulations of a hurricane in observing system simulation experiments. J. Atmos. Ocean. Technol., 34, 375– 383.指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2021-8-19 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare