博碩士論文 103384003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:126 、訪客IP:3.22.51.118
姓名 張百鎔(Pai-jung Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氮化鋁基板材料與熱傳導研究
(Study on the substrates and heat conduction of aluminum nitride)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 摘要
近來氮化鋁此類材料在電子材料應用中顯得十分熱門,探究原因主要為其具有高的熱傳導率、低的介電常數和介電損失、良好的電絕緣性等,可應用的範圍相當廣泛,具有極大潛力可逐漸取代其他的陶瓷基板材料。第一章中進行資料檢整並進行產業現況分析,以瞭解散熱基板產業發展與應用近況,有利釐清技術發展策略及研發方向。
第二章的討論探討氮化鋁基板成型與燒結,使用刮刀成型方式製成厚度一定的基板生胚,再經除膠燒結製得形貌緻密之疊壓氮化鋁熟胚基板。結果可以發現利用較長的除膠時間可以有效的提高單層氮化鋁熟胚的緻密度,達到視密度3.275 g/cm3,熱導值為163.8W/mK。
第三章進行氮化鋁基板封裝散熱系統研究,探討氮化鋁基板與晶片封裝時固晶使用之低溫鍵合的焊接材料,經由晶相及微結構觀察,材料選擇可有效降低固晶封裝的熱阻值。使用低溫鍵合的錫鉍焊料(170℃),運用於GaN LED,氮化鋁基板固晶封裝的熱阻值可到7.3℃/W。另比較不同晶片下壓力之固晶製程所封裝的元件晶片附著強度,發現較高下壓力的固晶鍵合層中的鉍會聚集在氮化鋁表面低窪處以減少孔隙增加接觸面積,因為聚集現象使介金屬化合物層的接觸情況增加,熱流路徑阻礙減少,封裝後的元件具有較低的熱阻值。
第四章觀察於氮化鋁基板製作金屬化電路之現象,採用金屬(Ti)仲介層的方式,來降低熱膨脹應力之產生。另進行網版印刷(金屬銅油墨配方)及製程條件控制,在金屬氧化物高溫還原實驗時,陶瓷與金屬共晶溫度下可形成堅固之共晶相介面,並配合正向力加壓,同時強化電路附著力與完成金屬化陶瓷基板製作。
摘要(英) ABSTRACT
Recently, materials such as aluminum nitride have become very popular in the application of electronic materials. The main reasons for their exploration are their high thermal conductivity, low dielectric constant and dielectric loss, and good electrical insulation. The range of applications is quite wide. , With great potential to gradually replace other ceramic substrate materials. We first conduct data review and analysis of the current status of the industry to understand the current development and application of the heat dissipation substrate industry, which is helpful to clarify the technology development strategy and R & D direction.
In the second part of the discussion, we discuss the forming and sintering of aluminum nitride substrates, using a blade forming method to make a green substrate with a certain thickness, and then gluing and sintering to produce a dense laminated aluminum nitride mature embryo substrate. As a result, it can be found that a longer degumming time can effectively increase the density of single-layer aluminum nitride mature embryos, reaching an apparent density of 3.275 g / cm3 and a thermal conductivity of 163.8W / mK.
The third part is to study the heat dissipation system of the aluminum nitride substrate package and discuss the low-temperature bonding solder material used for solid crystal bonding between the aluminum nitride substrate and the chip package. Through the observation of the crystal phase and microstructure, the material selection can effectively reduce the solid crystal package. Thermal resistance. Using low temperature bonded tin-bismuth solder (170℃), applied to GaN LED, the thermal resistance value of aluminum nitride substrate solid crystal package can reach 7.3℃ / W. In addition, the adhesion strength of the device wafers encapsulated by the die bonding process of different wafers was found. It was found that the bismuth in the die bonding layer of higher pressure will gather in the low-pits of the aluminum nitride surface to reduce the pores and increase the contact area because of the aggregation The contact of the intermetallic compound layer is increased, the obstruction of the heat flow path is reduced, and the packaged device has a lower thermal resistance value.
The fourth part observes the phenomenon of making metallized circuits on aluminum nitride substrates, and adopts the method of metal (Ti) interlayer to reduce the generation of thermal expansion stress. In addition, screen printing (metal copper ink formulation) and process conditions are controlled. During the high-temperature reduction experiment of metal oxides, a solid eutectic phase interface can be formed at the eutectic temperature of ceramics and metals, and pressurized with positive force. Strengthen circuit adhesion and complete the production of metallized ceramic substrates.
關鍵字(中) ★ 氮化鋁
★ 熱傳導率
★ 刮刀成型
★ 熱阻
★ 金屬化電路
關鍵字(英) ★ aluminum nitride
★ thermal conductivity
★ blade forming method
★ thermal resistance
★ metallized circuits
論文目次 摘要………………………………………………………………...………….. iv
誌謝 ………………………………………………………………………… vii
目錄 …………………………………………………………………………. viii
圖目錄 ……………………………………………………………………. x
表目錄 ………………………………………………………………..……. xii
符號說明 ……………………………………………………………………. xiii

第一章 高功率散熱基板產業發展與應用近況…………………...….…… 1
一.陶瓷基板的應用需求………………………………………………….. 1
二.陶瓷基板應用市場發展推測………………………………………….. 3
三.國際陶瓷基板技術發展現況………………………………………….. 8
四.國內陶瓷基板技術發展現況………………………………………….. 9
五.小結與建議…………………………………………………………….. 10
第二章 氮化鋁基板成型與燒結……………………………..….………… 11
一.前言……………………………………………………………………. 11
二.實驗……………………………………………………………………. 13
(一)實驗藥品
(二)實驗設備
(三)實驗步驟
三.實驗結果與討論……………………………………………………….. 18
(一)生胚/除膠與燒結後熟胚微結構
1.單層生胚/熟胚
2.疊壓生胚/熟胚
(二)氮化鋁熟胚基板特性分析
四.小結…………………………………………………………………….. 26
第三章 氮化鋁基板封裝散熱系統研究……………………….….………… 27
一.前言……………………………………………………………………. 27
二.實驗……………………………………………………………………. 30
(一)晶片封裝
(二)熱阻量測
(三)發光效率量測
(四)固晶鍵合附著強度測試
三.結果與討論(錫鉍焊料開發)………………………………………… 34
(一)Bi含量的多寡對於微結構的影響
(二)微結構的可靠度測試
四.小結……………………………………………………………………. 47
第四章 金屬化電路氮化鋁基板之研究………………….…..…………… 48
一.前言……………………………………………………………………. 48
二.實驗內容……………………………………………………………….51
(一)實驗藥品
(二)實驗設備
(三)實驗步驟
三.現象觀察討論………………………………………………………….. 55
四.小結……………………………………………………………………..62
第五章 結論……………………………………………….….……….……. 63
參考文獻 ……………………………………………………….…………… 65
參考文獻 [1] MoneyDJ理財網, ” 陶瓷基板 (Ceramic PCB, Ceramic Substrate)”,
https://www.moneydj.com/KMDJ/wiki/wikiViewer.aspx?keyid=ae371f5b-98c5-4f44-9ccb-5ca9d36fc8db
http://newjust.masterlink.com.tw/HotProduct/HTML/Basic.xdjhtm?A=PA67-1.html
http://newjust.masterlink.com.tw/HotProduct/HTML/Detail.xdjhtm?A=PA67-2.html
[2] 國中山科學研究院, 郭養國-氮化鋁技術專文(AlN Technology).
[3] Power Module Packaging: Material Market and Technology Trends 2017 - Report by Yole Developpement,
https://www.slideshare.net/Yole_Developpement/status-of-the-microfluidics-industry-2017-report-by-yole-developpement-75887200
[4] 璦司柏電子股份有限公司(簡稱ICP), 技術專文,
http://www.icprotect.com.tw/articles-8.html
[5] 金屬中心產業研究組-劉文海
[6] N. Kuramoto, H. Taniguchi and I. Aso, Am. Cera. Soc. Bull., Vol. 68, pp. 883-887(1989).
[7] Glen A. Slack, R. A. Tanzilli, R. O. Pohl, J. W. Vandersande, “The intrinsic thermal conductivity of AIN”, Journal of Physics and Chemistry of Solids, 48(7), 641-647(1987).
[8] W. Werdecker, F. Aldinger, IEEE Trans. Compon. Hybrids. Manu. Tech., Vol. 7, 399-400(1984).
[9] G. Selvaduray, L. Sheet, “Aluminium nitride: reviewof synthesis method”, Mat. Sci. Tech., Vol. 9, 463-473, (1993).
[10] G. Selvaduray and L. Sheet, “Aluminum nitride:review of synthesis methods,”Mater. Sci. Technol. 9, 463(1993).
[11] F. J-H. Haussonne, “Review of the synthesis methods for AlN,” Mater. Manufacturing Process, 10(4), 717(1995).
[12] R. Metselaar, R. Reenis, M. Chen, H. Gorter and H. T. Hintzen “Surface characterization of chemically treated aluminium nitride powders,”J. Euro. Cera. Soc., 15, 1079-1085(1995).
[13] D. Hotza, O. Sahling, “Hydrophobing of aluminium nitride powders”, J. Mat. Sci., 30, 127-132(1995).
[14] Y. Zhang, “Effect of surfactant on depressing the hydrolysis process for aluminum nitride powder,”Mat. Reas. Bull., 37, 2393-2400(2002).
[15] M. Alper, Chemical and Metallurgical Products Towanda, Pennsylvania, 12-29(1995).
[16] Serpek , O ., UK Patent, 13579(1906)
[17] Lefort, Pierre; Billy, Michel,. “Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere” J. Amer. Ceram. Soc., 76(9),2295-2299(1993).
[18] K. Komeya, A. Tsuge, H. Inoue, and H. Ohta, “Effect of CaCO3 addition on the sintering of AlN”, J. Mater. Sci. Lett., 1, 325-326(1982)
[19] N. Kuramoto, H. Taniguchi, Y. Mumata, and I. Aso, “Sintering process of translucent AlN and effect of impurities on thermal conductivity of AlN”, Yogyo Kyokaishi, 93, 41-46(1985)
[20] K. Watari, K. Ishizaki, and T. Fujikawa, “Thermal Conduction Mechanism of Aluminium Nitride Ceramics,” J. Mater. Sci., 27, 2627-30(1992).
[21] G. Gorzawski, M. Sternitzke, W. F. Müller, A. Berger and G. Muller, “Oxygen Enrichment at Inversion Domain Boundaries in Aluminium Nitride Influence on Thermal Conductivity,” J. Eur. Cera. Soc, 15, 95-99(1995).
[22] K. Watari, Hae J. Hwang, Motohiro Toriyama, and Shuze Kanzaki “Low-Temperature Sintering and High Thermal Conductivity of YLiO2-Doped AlN Ceramics,” J. Am. Ceram. Soc, 79(7), 1979-81(1996).
[23] Y. C. Liu, H. P. Zhou, Y. Wu, and L. Qiao, “Improving Thermal Conductivity of Aluminium Nitride Ceramics by Refining Microstructure,” Mater. Lett., 43, 114–117(2000).
[24] Y. D. Yu, A. M. Hundereb, R. Hoiera, R. E. Dunin-Borkowskic, M. A. Einarsrudd, “Microstructural characterization and microstructural effects on the thermal conductivity of AlN(Y2O3) ceramics,” J. Eur. Ceram. Soc., 22, 247-252(2002).
[25] L. Qiao, H. P. Zhoua, and R. L. Fub , “Thermal conductivity of AlN ceramics sintered with CaF2 and YF3,” Ceramics International, 29, 893–896(2003).
[26] L. A. Qiao, H. P. Zhou, H. Xue, S. Wang,“Effect of Y2O3 on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics,” J. Eur. Cera. Soc., 23, 61-67(2003).
[27] Manuel Frondel, Steffen Lohmann, ” The European Commission′s light bulb decree: Another costly regulation?”, Energy Policy, 39(6), 3177-3181(2011).
[28] Nicholas A. A. Howarth, Jan Rosenow, “Banning the bulb: Institutional evolution and the phased ban of incandescent lighting in Germany”, Energy Policy, 67, 737-746(2014).
[29] Claudio Raposo, Hubert Mathias Roeser, “Contamination of the environment by the current disposal methods of mercury-containing lamps in the state of Minas Gerais, Brazil”, Waste Management, 21(7), 661-670(2001).
[30] P. J. Shang, Z. Q. Liu, D. X. Li, J. K. Shang, “Bi-induced voids at the Cu3Sn/Cu interface in eutectic SnBi/Cu solder joints”, Scripta Materialia, 58(5), 409-412(2008).
[31] T. L. Yang, J. Y. Wu, C. C. Li, S. Yang, C. R. Kao, “Low temperature bonding for high temperature applications by using SnBi solders”, Journal of Alloys and Compounds, 647, 681-685(2015).
[32] Chang-Bae Lee, Seung-Boo Jung, Young-Eui Shin, Chang-Chae Shur, “The Effect of Bi Concentration on Wettability of Cu Substrate by Sn-Bi Solders”, Mater. Trans.,42(5), 751-755(2001).
[33] Wislei R. Osório, Leandro C. Peixoto, Leonardo R. Garcia, Nathalie Mangelinck-Noël, Amauri Garcia, “Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys”, Journal of Alloys and Compounds, 572, 97-106(2013).
[34] F. Hua, Z. Mei, and J. Glazer, IEEE. Electronic Components and Technology Conference (2008).
[35] T. Y. Kang, Y. Y. Xiu, C. Z. Liu, L. Hui, W. P. Tong, “Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect”, Journal of Alloys and Compounds, 509(53), 1785-1789(2011).
[36] P. J. Shang, Z. Q. Liu, D. X. Li, J. K. Shang, “Directional growth of Cu3Sn at the reactive interface between eutectic SnBi solder and (100) single crystal Cu”, Scripta Materialia, 59(3), 317-320(2008).
[37] Seongjun Kim, Keun-Soo Kim, Sun-Sik Kim & Katsuaki Suganuma, “Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders”, Journal of Electronic Materials,38, 266–272(2009).
[38] Alloy Phase Diagrams, in: H. Baker (Ed.), ASM Handbook, vol. 3, ASM, Materials Park, OH, 1992.
[39] 大功率LED散热封装用铝基氮化铝薄膜基板研究-手机知网 (cnki.net)
https://wap.cnki.net/lunwen-1013147516.html
[40] Airiti Library華藝線上圖書館_應用高導熱膜層於高功率發光二極體散熱效果之研究
https://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0028-0308201014224300
[41] 高功率LED陶瓷封裝技術的發展現況:材料世界網 (materialsnet.com.tw)
https://www.materialsnet.com.tw/DocView.aspx?id=7124
[42] Morris J E. Forward: Electrically Conductive Adhesives [J]. IEEE Trans Compon, Packg. Manuf. Techn. Part B, 18(2), 282-283(1995).
指導教授 蔣孝澈 劉正毓(Shiaw-Tseh Chiang Cheng-Yi Liu) 審核日期 2021-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明