博碩士論文 105324058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:18.216.130.48
姓名 朱罡慶(Kang-Ching Chu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米系統下的潤濕與毛細現象
(Wetting and Capillary Phenomena in Nanoscale Systems)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在宏觀系統,系統的特性通常取決於其整體的性質。但是當系統尺寸縮小到微米尺度時,界面性質(如:表面張力)會開始扮演角色。當進入奈米等級後,系統的特性將會被界面性質強烈地影響。也就是說,有些微米或奈米尺度的系統會展現宏觀系中統無法發現的特別行為。舉例來說,描述密閉管道之穿透動力學的Washburn方程某些條件下會失效(毛細現象)。此外,奈米液滴在某些具有部分潤濕性質的紋理表面時,會自發性的向外擴張(潤濕現象)。很明顯地,宏觀系統的理論已不足以用來解釋奈米系統的異常現象。正由於系統尺寸的縮小,機械裝置(如:閥門)已變的難以製造。期望開發一些方法來製造功能可以與宏觀系統中相同的納米機械裝置。為了探索上述在奈米系統下的潤濕與毛細現象,將採用多體耗散粒子動力學模擬方法。因此,利用理論模擬研究了流體在奈米管道的穿透動力學和奈米液滴在具有規律粗糙度之部分潤表面的異常擴張。此外,基於楊-拉普拉斯方程和邊緣效應,開發了一種新型的毛細奈米閥門。為了進一步了解這種新型閥門裝置,還研究了這種系統的相圖和形態學。
摘要(英) In macroscopic systems, the system characteristics depend mainly on their bulk properties. As the system size decreases to microscopic systems, however, the interfacial properties such as interfacial tensions come into play. Down to the nanosopic level, the system behavior is significantly affected by interfacial properties. That is, some micro- and nanoscale systems exhibit special phenomena which cannot be observed in macroscopic systems. For instance, Washburn’s equation describing the penetration dynamics in closed channels fails at some conditions (capillary phenomenon). Furthermore, the spontaneous spreading can take place as a nanodroplet is deposited on some textured surfaces with partially wetting characteristic (wetting phenomenon). Obviously, the theories for macroscopic systems are not sufficient to explain the abnormal behaviors in nanoscale systems. Owing to the reduction of system size, some mechanical devices such as valves are difficult to fabricate. It is desirable to develop some approach to manufacture mechanical nanodevice, whose function can be the same as that in macroscopic systems. In order to explore above wetting and capillary phenomena in nanoscale systems, the theoretical work based on “many-body dissipative particle dynamics” simulations are used. Consequently, the penetration dynamics through nanoscale capillaries and the abnormal spontaneous spreading of nanodroplet on partially wetting surfaces with regular roughness were theoretically studied. Moreover, a novel capillary nanovalve based on the Young-Laplace equation and edge effect was developed. To understand the mechanism of this the valving device further, the phase diagram and morphology of such systems were studied as well.
關鍵字(中) ★ 潤濕現象
★ 毛細現象
★ 多體耗散粒子動力學
★ Washburn 方程
★ 完全潤濕表面
★ 自發性擴張
★ 表面拓墣
★ 完全潤濕表面
★ 楊-拉普拉斯方程
★ 奈米毛細閥門
★ 奈米孔洞
★ 多重穩定態
關鍵字(英) ★ Wetting phenomena
★ Capillary phenomena
★ Many-body dissipative particle dynamics
★ Washburn′s equation
★ Total wetting surface
★ Spontaneous spreading
★ Surface topology
★ Total wetting surface
★ Young-Laplace equation
★ Capillary nanovalve
★ Nanopore
★ Multiple stable states
論文目次 Contents
中文摘要 I
Abstract II
致謝 III
Contents VI
List of Figures IX
List of Tables XIV
Chapter 1 Introduction 1
1-1 Wetting Phenomena and Young’s Contact Angle 1
1-2 Wenzel and Cassie-Baxter Models 4
1-3 Roughness Topology 5
1-4 Capillarity 7
1-5 Spontaneous Imbibition 8
1-6 References 9
Chapter 2 Penetration dynamics through nanometer-scale hydrophilic capillaries: beyond Washburn’s equation and extended menisci 17
2-1 Abstract 17
2-2 Introduction 18
2-3 Simulation Method 20
2-4 Results and Discussion 23
2-4-1 Dynamic contact angle and Washburn’s equation 23
2-4-2 Beyond Washburn’s equation 28
2-4-3 Extended menisci and rate of spontaneous spreading 34
2-5 References 37
2-6 Supporting Information 42
Chapter 3 Spontaneous spreading of nanodroplets on partially wetting surfaces with continuous grooves: synergy of imbibition and capillary condensation 43
3-1 Abstract 43
3-2 Introduction 44
3-3 Simulation Method 47
3-4 Results and Discussions 51
3-4-1 Nanodroplets on surfaces with discontinuous grooves 51
3-4-2 Nanodroplets on surfaces with continuous grooves 55
3-4-3 Atypical spontaneous spreading on a partially wetting surface 59
3-4-4 Mechanism: imbibition, arrest, and capillary condensation 63
3-5 References 67
3-6 Supporting Information 74
3-6-1 Length and time scales of MDPD in the water system 74
3-6-2 The shapshots of top and side views of nanodroplets on surfaces of four patterns with discontinuous and continuous grooves 75
3-6-3 The criterion for wicking 76
3-6-4 The crossroad effect 77
Chapter 4 Pressure-gated capillary nanovalves based on liquid nanofilms 80
4-1 Abstract 80
4-2 Introduction 80
4-3 Simulation Method 83
4-4 Results and Discussion 85
4-4-1 Concave/convex menisci on a thin liquid film 85
4-4-2 On/off switch of the nanovalve 90
4-5 References 96
Chapter 5 Spontaneous formation of nanopores within a nanofilm immersed in an immiscible liquid 102
5-1 Abstract 102
5-2 Introduction 103
5-3 Simulation Method 105
5-4 Result and Discussion 108
5-4-1 Phase diagram of the meniscus shape 108
5-4-2 Multiple stable states of the meniscus shape 111
5-5 References 116
Chapter 6 Conclusions 122
參考文獻 1-6 References
[1] S. F. L. Mertens, A. Hemmi, S. Muff, O. Gröning, S. D. Feyter, J. Osterwalder, T. Greber, Switching stiction and adhesion of a liquid on a solid, Nature 534 (2016) 676-679.
[2] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan, N. A. Koratkar, Wetting transparency of graphene, Nature materials 11 (2012) 217-222.
[3] N. Shahidzadeh, E. Bertrand, J. P. Dauplait, J. C. Borgotti, P. Vié, D. Bonn, Effect of wetting on gravity drainage in porous media, Transp. Porous Media 52 (2003) 213.
[4] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, Wetting and spreading, E. Rolley, Rev. Modern Phys. 81 (2009) 739.
[5] E. Bertrand, D. Bonn, D. Broseta, J. O. Indekeuc, J. Meuniera, K. Ragilb, N. Shahidzadeha, Wetting of alkanes on water, J. Pet. Sci. Eng. 33 (2002) 217.
[6] V. Bergeron, D. Bonn, J. Y. Martin, L. Vovelle, Controlling droplet deposition with polymer additives, Nature 405 (2000) 772.
[7] B. Zhao, C. W. MacMinn, R. Juanes, Wettability control on multiphase flow in patterned microfluidics, PNAS 113 (2016) 10251-10256.
[8] N. M. Oliveira, A. I. Neto, W. Song, J. F. Mano, Two-dimensional open microfluidic devices by tuning the wettability on patterned superhydrophobic polymeric surface, J. F. Mano, Appl. Phys. Express 3 (2010) 085205.
[9] M. Liu, J. Wang, M. He, L. Wang, F. Li, L. Jiang, Y. Song, Inkjet printing controllable footprint lines by regulating the dynamic wettability of coalescing ink droplets, Appl. Mater. Inter. 6 (2014) 13344-13348.
[10] D. Tian, Y. Song, L. Jiang, Patterning of controllable surface wettability for printing techniques, Chem. Soc. Rev. 42 (2013) 5184-5209.
[11] H. Wu, K. Zhu, B. Cao , Z. Zhang, B. Wu, L. Liang, G. Chai, A. Liu, Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets, Soft Matter 13 (2017) 2995-3002.
[12] J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling, Phys. Fluids 7 (1995) 236-247.
[13] L. Zhang, N. Zhao, J. Xu, J. Adhes, Fabrication and application of superhydrophilic surfaces: a review, Sci. Technol. 28 (2014) 769-790.
[14] J. W. Drelich, E. Chibowski, D. D. Meng, K. Terpilowski, Hydrophilic and superhydrophilic surfaces and materials, Soft Matter 7 (2011) 9804-9828.
[15] P. Patel, C. K. Choi, D. D. Meng, Superhydrophilic surfaces for antifoqging and antifouling microfluidic devices, JALA 15 (2010) 114-119.
[16] K. E. Tettey, M. I. Dafinone, D. Lee, Progress in superhydrophilic surface development, Mater. Expr. 1 (2011) 89-104.
[17] K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces, Langmuir 25 (2009) 11748-11759.
[18] F. L. Wu, S. L. Ou, R. H. Horng, Y. C. Kao, Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications, Sol. Energ. Mat. Sol. C 122 (2014) 233-240.
[19] R. Iosub, C. Moldovan, M. Modreanu, Silicon membranes fabrication by wet anisotropic etching, Sensor Actuators A-Phys. 99 (2002) 104-111.
[20] T. Sun, G. Qing, B. Su, L. Jiang, Functional biointerface materials inspired from nature, Chem. Soc. Rev. 40 (2011) 2909-2921.
[21] S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired surfaces with superwettability: new insight on theory, design, and applications, Chem. Rev. 115 (2015) 8230-8293.
[22] B. Su, Y. Tian, L. Jiang, Bioinspired interfaces with superwettability: from materials to chemistry, J. Am. Chem. Soc. 138 (2016) 1727-1748.
[23] C. C. Chang, C. J. Wu, Y. J. Sheng, H. K. Tsao, Air pocket stability and the imbibition pathway in droplet wetting, Soft Matter 11 (2015) 7308-7315.
[24] H. Teisala, M. Tuominen, M. Aromaa, M. Stepien, J. M. Mäkelä, J. J. Saarinen, M. Toivakka, J. Kuusipalo, Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces, Langmuir 28 (2012) 3138-3145.
[25] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Petal effect: a superhydrophobic state with high adhesive force, Langmuir 24 (2008) 4114-4119.
[26] Z. Chu, S. Seeger, Superamphiphobic surfaces, Chem. Soc. Rev. 43 (2014) 2784-2798.
[27] L. He, A. Karumuri, S. M. Mukhopadhyay, Wettability tailoring of nanotube carpets: morphology-chemistry synergy for hydrophobic–hydrophilic cycling, RSC Adv. 7 (2017) 25265.
[28] L. Leger, M. Ertnan, A. M. Guinet-Picard, D. Ausserre, C. Strazielle, Precursor film profiles of spreading liquid drops, Phys. Rev. Lett. 60 (1988) 2390.
[29] M. Leskelä, M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures, Thin solid films 409 (2002) 138-146.
[30] Y. H. Weng, C. J. Wu, H. K. Tsao, Y. J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Phys. Chem. Chem. Phys. 19 (2017) 27786.
[31] H. Xu, D. Shirvanyants, K. Beers, K. Matyjaszewski, M. Rubinstein, S. S. Sheiko, Molecular motion in a spreading precursor film, Phys. Rev. Lett. 93 (2004) 206103.
[32] G. He, N. G. Hadjiconstantinou, A molecular view of Tanner′s law: molecular dynamics simulations of droplet spreading, J. Fluid Mech. 497 (2003) 123-132.
[33] L. H. Tanner, The spreading of silicone oil drops on horizontal surfaces, J. Phys. D: Appl. Phys. 12 (1979) 1473.
[34] V. Singh, C. J. Huang, Y. J. Sheng, H. K. Tsao, Smart zwitterionic sulfobetaine silane surfaces with switchable wettability for aqueous/nonaqueous drops, J. Mater. Chem. A 6 (2018) 2279-2288.
[35] C. J. Wu, C. J. Huang, S. Jiang, Y. J. Sheng, H. K. Tsao, Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine, RSC Adv. 6 (2016) 24827-24834.
[36] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988-994.
[37] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546.
[38] L. Vogelaar, R. G. Lammertink, W. Matthias, Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step, Langmuir 22 (2006) 3125-3130.
[39] L. Amato, S. S. Keller, A. Heiskanen, M. Dimaki, J. Emnéus, A. Boisen, M. Tenje, Fabrication of high-aspect ratio SU-8 micropillar arrays, Microelectron. Eng. 98 (2012) 483−487.
[40] J. P. Hulme, S. S. A. An, N. Goddard, Y. Miyaharac, A. okicic, Fabrication of a flexible multi-referenced surface plasmon sensor using room temperature nanoimprint lithography, Curr. Appl. Phy. 9 (2009) e185-e188.
[41] M. Sbragaglia, A. M. Peters, C. Pirat, B. M. Borkent, R. G. H. Lammertink, M. Wessling, D. Lohse, Spontaneous breakdown of superhydrophobicity, Phys. Rev. Lett. 99 (2007) 156001.
[42] T. Koishi, K. Yasuoka, S. Fujikawa, T. Ebisuzaki, X. C. Zeng, Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface, Proc. Natl. Acad. Sci. USA 106 (2009) 8435-8440.
[43] A. Marmur, Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19 (2003) 8343-8348.
[44] B. He, N. A. Patankar, J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir 19 (2003) 4999-5003.
[45] K. H. Chu, R. Xiao, E. N. Wang, Uni-directional liquid spreading on asymmetric nanostructured surfaces, Nat. Mater. 9 (2010) 413-417.
[46] Y. J. Sheng, S. Y. Jiang, H. K. Tsao, Effects of geometrical characteristics of surface roughness on droplet wetting, J. Chem. Phys. 127 (2007) 234704.
[47] J. Wang, S. Chen, D. Chen, Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study, Phys. Chem. Chem. Phys. 17 (2015) 30533-30539.
[48] A. K. Metya, S. Khan, J. K. Singh, Wetting transition of the ethanol–water droplet on smooth and textured surfaces, J. Phys. Chem. C 118 (2014) 4113-4121.
[49] J. Berthier, K. A. Brakke, The physics of microdroplets, (John Wiley & Sons, 2012).
[50] P. G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves, (Springer Science & Business Media, 2013).
[51] A.V. Lukyanov, V. V. Mitkin, T. G. Theofanous, M. Baines, Capillary transport in particulate porous media at low levels of saturation, J. Appl. Phys. 125 (2019) 185301.
[52] Y. Feng, W. W. Zhu, W. Guo and L. Jiang, Bioinspired Energy Conversion in Nanofluidics: A Paradigm of Material Evolution, Adv. Mater. 29 (2017) 1702773.
[53] J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid and H. Bayley, Continuous base identification for single-molecule nanopore DNA sequencing, Nature Nanotech. 4 (2009) 265.
[54] C. Yan, C. Lv, Y. Zhu, G. Chen, J. Sun and G. Yu, Engineering 2D Nanofluidic Li‐Ion Transport Channels for Superior Electrochemical Energy Storage, Adv. Mater. 29 (2017) 1703909.
[55] J. Gao, Y. Feng, W. Guo and L. Jiang, Nanofluidics in two-dimensional layered materials: inspirations from nature, Chem. Soc. Rev. 46 (2017) 5400-5424.
[56] B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu and A. K. Geim, Molecular transport through capillaries made with atomic-scale precision, Nature 538 (2016) 222.
[57] W. Satoh, H. Hosono, H. Suzuki, On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions, Anal. Chem. 77 (2005) 6857-6863.
[58] E. Kreit, M. Dhindsa, S. Yang, M. Hagedon, K. Zhou, I. Papautsky, J. Heikenfeld, Laplace barriers for electrowetting thresholding and virtual fluid confinement, Langmuir 26 (2010) 18550-18556.
[59] B. P. Casavant, E. Berthier, A. B. Theberge, J. Berthier, S. I. M. Sauri, L. L. Bischel, K. Brakke, C. J. Hedman, W. Bushman, N. P. Keller, D. J. Beebe, Suspended microfluidics, Proc. Natl. Acad. Sci. USA 110 (2013) 10111-10116.
[60] S. Gao, J. Long, W. Liu, Z. Liu, Evaporation-induced wetting transition of nanodroplets on nanopatterned surfaces with concentric rings: Surface geometry and wettability effects, Langmuir 35 (2019) 9546-9553.
[61] L. Feng, S. H. Li, Y. S. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Super‐hydrophobic surfaces: from natural to artificial, Adv. Matter. 14, 1857-1860 (2002).
[62] C. Ishino, K. Okumura, Wetting transitions on textured hydrophilic surfaces, Eur. Phys. J. E 25, 415-424 (2008).

2-5 References
[1] Y. Feng, W. W. Zhu, W. Guo and L. Jiang, Bioinspired Energy Conversion in Nanofluidics: A Paradigm of Material Evolution, Adv. Mater. 29 (2017) 1702773.
[2] J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid and H. Bayley, Continuous base identification for single-molecule nanopore DNA sequencing, Nature Nanotech. 4 (2009) 265.
[3] C. Yan, C. Lv, Y. Zhu, G. Chen, J. Sun and G. Yu, Engineering 2D Nanofluidic Li‐Ion Transport Channels for Superior Electrochemical Energy Storage, Adv. Mater. 29 (2017) 1703909.
[4] L. Rems, D. Kawale, L.J. Lee, P. E. Boukany, Flow of DNA in micro/nanofluidics: From fundamentals to applications, Biomicrofluidics 10 (2016) 043403.
[5] L. Lin, Q. Chen, J. Sun, Micro/nanofluidics-enabled single-cell biochemical analysis, TrAC Trends Anal. Chem. (2017).
[6] J. Gao, Y. Feng, W. Guo and L. Jiang, Nanofluidics in two-dimensional layered materials: inspirations from nature, Chem. Soc. Rev. 46 (2017) 5400-5424.
[7] L. J. Guo, X. Cheng, C. F. Chou, Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching, Nano Lett. 4 (2004) 69-73.
[8] A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulosb and O. Bakajin, Nanofluidics in carbon nanotubes, Nano Today 2 (2007) 22-29.
[9] B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu and A. K. Geim, Molecular transport through capillaries made with atomic-scale precision, Nature 538 (2016) 222.
[10] E. W. Washburn, The Dynamics of Capillary Flow, Phys. Rev. 17 (1921) 273.
[11] B. V. Zhmud, F. Tiberg, K. Hallstensson, Dynamics of capillary rise, J. Colloid Interface Sci. 228 (2000), 263-269.
[12] M. Potash Jr, P. C. Wayner Jr, Evaporation from a two-dimensional extended meniscus, Int. J. Heat Mass Transfer 15 (1972) 1851-1863.
[13] K. Park, K. J. Noh, K. S. Lee, Transport phenomena in the thin-film region of a micro-channel, Int. J. Heat Mass Transfer 46 (2003) 2381-2388.
[14] S. S. Panchamgam, J. L. Plawsky, P. C. Wayner Jr, Microscale heat transfer in an evaporating moving extended meniscus, Exp. Therm Fluid Sci. 30 (2006) 745-754.
[15] S. DasGupta, J. A. Schonberg, I. Y. Kim, P. C. Wayner Jr., Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci, J. Colloid Interface sci. 157 (1993) 332-342.
[16] P. B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68 (2003) 066702.
[17] C. Chen, L. Zhuang, X. Li, J. Dong and J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28 (2011) 1330-1336.
[18] A. Ghoufi, J. Emile and P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E--Soft Matter 36 (2013) 10.
[19] A. Ghoufi and P. Malfreyt, Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods, Phys. Rev. E 82 (2010) 016706.
[20] A. F. Jakobsen, Erratum: “Constant-pressure and constant-surface tension simulations in dissipative particle dynamics, J. Chem. Phys. 125 (2006) 029901.
[21] M. Liu, P. Meakin and H. Huang, Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction, J. Comput. Phys. 222 (2007) 110-130.
[22] M. Arienti, W. Pan, X. Li and G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134 (2011) 204114.
[23] P. Espanol, P. Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett. 30 (1995) 191.
[24] A. V. Quesada, M. Ellero, P. Espanol, Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations, Phys. Rev. E. 79 (2009) 056707.
[25] J. Xu, C. Yang, Y. J. Sheng, H. K. Tsao, Apparent hydrodynamic slip induced by density inhomogeneities at fluid–solid interfaces, Soft matter 11 (2015) 6916-6920.
[26] J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817-829.
[27] C. Cupelli, B. Henrich, T. Glatzel, R. Zengerle, M. Moseler and M. Santer, Dynamic capillary wetting studied with dissipative particle dynamics, New J. Phys. 10 (2008) 043009.
[28] D. Lei, M. Lin, Y. Li, W. Jiang, A two-angle model of dynamic wetting in microscale capillaries under low capillary numbers with experiments, J. Colloid Interface Sci. 520 (2018) 91-100.
[29] L. Keiser, K. Jaafar, J. Bico, É. Reyssat, Dynamics of non-wetting drops confined in a Hele-Shaw cell, J. Fluid Mech. 845 (2018) 245-262.
[30] A. V. Kovalev, A. A. Yagodnitsyna, A. V. Bilsky, Flow hydrodynamics of immiscible liquids with low viscosity ratio in a rectangular microchannel with T-junction, Chem. Eng. J. 352 (2018) 120-132.
[31] J. E. Seebergh, J. C. Berg, Dynamic wetting in the low capillary number regime, Chem. Eng. Sci. 47 (1992) 4455-4464.
[32] J. S. Rowlinson, B. Widom, Molecular theory of capillarity. Courier Corporation (2013).
[33] J. N. Israelachvili, Intermolecular and surface forces. Academic press, Academic press (2011).
[34] V. Singh, C. J. Huang, Y. J. Sheng, H. K. Tsao, Smart zwitterionic sulfobetaine silane surfaces with switchable wettability for aqueous/nonaqueous drops, J. Mater. Chem. A 6 (2018) 2279-2288.
[35] C. J. Wu, C. J. Huang, S. Jiang, Y. J. Sheng, H. K. Tsao, Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine, RSC Adv. 6 (2016) 24827-24834.
[36] Y. H. Weng, C. J. Wu, H. K. Tsao, Y. J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Phys. Chem. Chem. Phys. 19 (2017) 27786-27794.
[37] J. Berthier, F.Loe-Mie, V. M.Tran, S. Schoumacker, F. Mittler, G. Marchand, N. Sarrut, On the pinning of interfaces on micropillar edges, J. Colloid Interface sci. 338 (2009) 296-303.
[38] Y. H. Weng, I. F. Hsieh, H. K. Tsao, Y. J. Sheng, Water-repellent hydrophilic nanogrooves, Phys. Chem. Chem. Phys. 19 (2017) 13022-13029.
[39] P. D. Gennes, Wetting: statics and dynamics, Rev. Mod. Phys. 57 (1985) 827.
[40] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, Wetting and spreading, Rev. Mod. Phys. 81 (2009) 739.
[41] J. Eggers, H. A. Stone, Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle, J. Fluid Mech. 505 (2004) 309-321.
[42] Y. C. Liao, Y. C. Li, H. H. Wei, Drastic changes in interfacial hydrodynamics due to wall slippage: slip-intensified film thinning, drop spreading, and capillary instability, Phys. Rev. Let. 111.1 (2013) 136001.

3-5 References
[1] N. Shahidzadeh, E. Bertrand, J. P. Dauplait, J. C. Borgotti, D. Bonn, Effect of wetting on gravity drainage in porous media, Transport Porous Med. 52 (2003) 213.
[2] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009) 739.
[3] E. Bertrand, D. Bonn, D. Broseta, N. Shahidzadeh, K. Ragil, H. Dobbs, J. O. Indekeu, J. Meunier, Wetting of alkanes on water, J. Pet. Sci. Eng. 33 (2002) 217.
[4] V. Bergeron, D. Bonn, J. Y. Martin, L. Vovelle, Controlling droplet deposition with polymer additives, Nature 405 (2000) 772.
[5] T. Young, III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, 95 (1805) 65-87.
[6] Y. Yuan, T. R. Lee, Contact angle and wetting properties, Surface science techniques, (Springer, Berlin, Heidelberg 2013 3-34).
[7] S. Ebnesajjad, Surface tension and its measurement, In Handbook of Adhesives and Surface Preparation, (William Andrew Publishing (2011) 21-30).
[8] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28 (1936) 988-994.
[9] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546.
[10] T. Koishi, K. Yasuoka, S. Fujikawa, T. Ebisuzaki, X.C. Zeng, Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface, Proc. Natl. Acad. Sci. USA 106 (2009) 8435-8440.
[11] Y. J. Sheng, S. Y. Jiang, H. K. Tsao, Effects of geometrical characteristics of surface roughness on droplet wetting, J. Chem. Phys. 127 (2007) 234704.
[12] L. Vogelaar, R. G. Lammertink, W. Matthias, Superhydrophobic surfaces having two-fold adjustable roughness prepared in a single step, Langmuir 22 (2006) 3125-3130.
[13] L. Amato, S. S. Keller, A. Heiskanen, M. Dimaki, J. Emneus, A. Boisen, M. Tenje, Fabrication of high-aspect ratio SU-8 micropillar arrays, Microelectron. Eng. 98 (2012) 483−487.
[14] J.P. Hulme, S.S.A. An, N. Goddard, Y. Miyahara, A. Oki, Fabrication of a flexible multi-referenced surface plasmon sensor using room temperature nanoimprint lithography, Curr. Appl. Phy. 9 (2009) e185-e188.
[15] W. Satoh, H. Hosono, H. Suzuki, On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions, Anal. Chem. 77 (2005) 6857-6863.
[16] E. Kreit, M. Dhindsa, S. Yang, M. Hagedon, K. Zhou, I. Papautsky, J. Heikenfeld, Laplace barriers for electrowetting thresholding and virtual fluid confinement, Langmuir 26 (2010) 18550-18556.
[17] M. Sbragaglia, A. M. Peters, C. Pirat, B. M. Borkent, R. G. H. Lammertink, M. Wessling, D. Lohse, Spontaneous Breakdown of Superhydrophobicity, Phys. Rev. Lett. 99 (2007) 156001.
[18] A. M. EmelyanenkoL, B. BoinovichK, A. Emelyanenko, Spreading of biologically relevant liquids over the laser textured surfaces, J. Colloid Interface Sci. 567 (2020) 224-234.
[19] A. M. Emelyanenko, L. B. Boinovich, K. A. Emelyanenko, Anisotropic Spreading Along the Textured Surfaces with Isotropic Wetting, Int. J. Wettability Sci. Technol. 1 (2018) 47-64.
[20] V. Singh, C. J. Huang, Y. J. Sheng, H. K. Tsao, Smart zwitterionic sulfobetaine silane surfaces with switchable wettability for aqueous/nonaqueous drops, J. Mater. Chem. A (2018) 6 2279-2288.
[21] S. W. Hu, C. Y. Wang, Y. J. Sheng, H. K. Tsao, Peculiar Wetting of N, N-Dimethylformamide: Expansion, Contraction, and Self-Running, J. Phys. Chem. C 123 (2019) 24477-24486.
[22] S. Chen, J. Wang, D. Chen. States of a water droplet on nanostructured surfaces, J. Phys. Chem. C 118 (2014) 18529-18536.
[23] C. Zhu, Y. Gao, Y. huang, H. Li, S. Meng, J. S. Francisco, X. C. Zeng, Controlling states of water droplets on nanostructured surfaces by design, Nanoscale 9 (2017) 18240-18245.
[24] S. Gao, J. Long, W. Liu, Z. Liu, Evaporation-induced wetting transition of nanodroplets on nanopatterned surfaces with concentric rings: Surface geometry and wettability effects, Langmuir 35 (2019) 9546-9553.
[25] J. Wang, S. Chen, D. Chen, Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: A molecular dynamics simulation study, Phys. Chem. Chem. Phys. 17 (2015) 30533-30539.
[26] A. K. Metya, S. Khan, J. K. Singh. Wetting transition of the ethanol–water droplet on smooth and textured surfaces, J. Phys. Chem. C 118 (2014) 4113-4121.
[27] P. B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68 (2003) 066702.
[28] K. C. Chu, Y. J. Sheng and H. K. Tsao, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn′s equation and extended menisci J. Colloid Interface Sci. 538 (2019) 340-348.
[29] K. C. Chu, S. W. Hu, H. K. Tsao, Y. J. Sheng, Strong competition between adsorption and aggregation of surfactant in nanoscale systems, J. Colloid Interface Sci. 553 (2019) 674-681.
[30] C. Chen, L. Zhuang, X. Li, J. Dong and J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28 (2011) 1330-1336.
[31] A. Ghoufi, J. Emile and P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E--Soft Matter 36 (2013) 10.
[32] M. Arienti, W. Pan, X. Li and G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134 (2011) 204114.
[33] K. C. Chu, H. K. Tsao, Y. J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, J. Colloid Interface Sci. 560 (2020) 485-491.
[34] P. Espanol, P. Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett. 30 (1995) 191.
[35] R. D. Groot, P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107 (1997) 4423-4435.
[36] H. C. Tsai, Y. L. Yang, Y. J. Sheng, H. K. Tsao, Formation of Asymmetric and Symmetric Hybrid Membranes of Lipids and Triblock Copolymers, Polymers 12 (2020) 639.
[37] Y. L. Yang, M. Y. Chen, H. K. Tsao, Y. J. Sheng, Dynamics of bridge–loop transformation in a membrane with mixed monolayer/bilayer structures, Phys. Chem. Chem. Phys. 20 (2018) 6582-6590.
[38] C. Cupelli, B. Henrich, T. Glatzel, R. Zengerle, M. Moseler, M. Santer, Dynamic capillary wetting studied with dissipative particle dynamics, New J. Phys. 10 (2008) 043009.
[39] C. C. Chang, Y. J. Sheng, H. K. Tsao, Wetting hysteresis of nanodrops on nanorough surfaces, Phys. Rev. E 94 (2016) 042807.
[40] J. H. Irving, J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817–829.
[41] A. Ghoufi, P. Malfreyt, Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods, Phys. Rev. E 82 (2010) 016706.
[42] J. Berthier, K. A. Brakke, The physics of microdroplets, Chapter 4.6.3.7, (John Wiley & Sons, 2012).
[43] P. G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Chapter 9.2.2, (Springer Science & Business Media, 2004).
[44] Q. Yuan, X. Huang, Y. P. Zhao, Dynamic spreading on pillar-arrayed surfaces: Viscous resistance versus molecular friction, Phys. Fluids 26 092104 (2014).
[45] Q. Yuan, Y. P. Zhao, Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface, J. Fluid Mech 716 (2013) 171.
[46] L. H. Tanner, The spreading of silicone oil drops on horizontal surfaces, J. Phys. D 12 (1979) 1473.
[47] P. G. De Gennes, Wetting: statics and dynamics, Rev, Mod. Phys. 57 (1985) 827.
[48] J. Eggers, H.A. Stone, Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle, J. Fluid Mech. 505 (2004) 309-321.
[49] H. H. Wei, H. K. Tsao, K. C. Chu, Slipping moving contact lines: critical roles of de Gennes’s ‘foot’in dynamic wetting, J. Fluid Mech. 873 (2019) 110-150.
[50] E.W. Washburn, The dynamics of capillary flow, Phys. Rev. 17 (1921) 273.
[51] B.V. Zhmud, F. Tiberg, K. Hallstensson, Dynamics of capillary rise, J. Colloid Interface Sci. 228 (2000) 263-269.
[52] Y. H. Weng, C. J. Wu, H. K. Tsao, Y. J. Sheng, Spreading dynamics of a precursor film of nanodrops on total wetting surfaces, Phys. Chem. Chem. Phys. 19 (2017) 27786-27794.
[53] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning, Langmuir, 27 (2011) 6890-6896.
[54] C. J. Wu, Y. F. Li, W. Y. Woon, Y. J. Sheng, H. K. Tsao, Contact angle hysteresis on graphene surfaces and hysteresis-free behavior on oil-infused graphite surfaces, Appl. Surf. Sci. 385 (2016) 153-161.
[55] C. J. Wu, V. Singh, Y. J. Sheng, H. K. Tsao, Forced spreading of aqueous solutions on zwitterionic sulfobetaine surfaces for rapid evaporation and solute separation, Langmuir 33 (2017) 7569-7574.
[56] C. C. Chang, C. J. Wu, Y. J. Sheng, H. K. Tsao, Resisting and pinning of a nanodrop by trenches on a hysteresis-free surface, J. Chem. Phys. 145 (2016) 164702.
[57] A. M. EmelyanenkoL, B. BoinovichK, A. Emelyanenko, Spreading of biologically relevant liquids over the laser textured surfaces, J. Colloid Interface Sci. 567 (2020) 224-234.
[58] A. M. Emelyanenko, L. B. Boinovich, K. A. Emelyanenko, Anisotropic Spreading Along the Textured Surfaces with Isotropic Wetting, Int. J. Wettability Sci. Technol. 1 (2018) 47-64.
[59] B. P. Casavant, E. Berthier, A. B. Theberge, J. Berthier, S. I. M. Sauri, L. L. Bischel, K. Brakke, C. J. Hedman, W. Bushman, N. P. Keller, D. J. Beebe, Suspended microfluidics, Proc. Natl. Acad. Sci. USA 110 (2013) 10111-10116.
[60] M. Leman, F. Abouakil, A. D. Griffiths, Droplet-based microfluidics at the femtolitre scale, Lab Chip 15 (2015) 753-765.
[61] A. L. Vayssade, C. Lee, E. Terriac, F. Monti, M. Cloitre, P. Tabeling, Dynamical role of slip heterogeneities in confined flows. Phys. Rev. E 89 (2014) 052309.
[62] Q. Yuan, Y. P. Zhao, Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner, Proc. R. Soc. A 468 (2012) 310-322.
[63] S. Herminghaus, M. Brinkmann, R. Seemann, Wetting and Dewetting of Complex Surface Geometries, Annu. Rev. Mater. Res. 38 (2008) 101-21.
[64] P. Concus, R. Finn, On the Behavior of a Capillary Surface in a Wedge, Proc. Natl. Acad. Sci. USA 63 (1969) 292-299.
[65] H. Liu, G. Cao, Effectiveness of the Young-Laplace equation at nanoscale, Sci. Rep. 6 (2016) 23936.
[66] M. Matsumoto, K Tanaka, Nano bubble—Size dependence of surface tension and inside pressure, Fluid Dyn. Res. 40 (2008) 546.
[67] H. Ibach, Physics of surfaces and interfaces, (Berlin: Springer 2006).
[68] J. Pellicer, V. Garcia-Morales, M. J. Hernandez, On the demonstration of the Young-Laplace equation in introductory physics courses, Phys. Educ. 35 (2000) 126.
[69] L. R. Fisher, R. A. Gamble, J. Middlehurst, The Kelvin equation and the capillary condensation of water, Nature 290 (1981) 575-576.
[70] M. Binggeli, C. M. Mate, Influence of capillary condensation of water on nanotribology studied by force microscopy, Applied physics letters 65 (1994) 415-417.
[71] J. Zhong, J. Riordon, S. H. Zandavi, Y. Xu, A. H. Persad, F. Mostowfi, D. Sinton, Capillary Condensation in 8 nm Deep Channels, J. Phys. Chem. Lett. 9 (2018) 497-503.
[72] A. Malijevský, A. O. Parry, Modified Kelvin equations for capillary condensation in narrow and wide grooves, Phys. Rev. Lett. 120 (2018) 135701.

4-5 References
[1] [1] P. F. Man, C. H. Mastrangelo, M. A. Burns, D. T. Burke, Microfabricated capillary-driven stop valve and sample injector. In Proceedings, IEEE Conference MEMS; IEEE: Heidelberg, Germany (1998) 45−50.
[2] T. D. Nguyen, H. R. Tseng, P. C. Celestre, A. H. Flood, Y. Liu, J. F. Stoddart, J. I. Zink, A reversible molecular valve, Proc. Nat. Acad. Sci. 102 (2005) 10029-10034.
[3] K. W. Oh, H. A. Chong, A review of microvalves, J. Micromech. Microeng. 16 (2006) R13.
[4] M. Allain, J. Berthier, S. Basrour, P. Pouteau, Electrically actuated sacrificial membranes for valving in microsystems, J. Micromech. Microeng. 20 (2010) 035006.
[5] H. J. Cho, K. W. Oh, C. H. Ahn, P. Boolchand, T. C. Nam, Stress analysis of silicon membranes with electroplated permalloy films using Raman scattering, IEEE Trans. Magn. 37 (2001) 2749-2751.
[6] C. Fu, Z. Rummler, W. Schomburg, Magnetically driven micro ball valves fabricated by multilayer adhesive film bonding, J. Micromech. Microeng. 13 (2003) S96.
[7] H. J. Cho, K. W. Oh, C. H. Ahn, P. Boolchand, T. C. Nam, Stress analysis of silicon membranes with electroplated permalloy films using Raman scattering, IEEE Trans. Magn. 37 (2001) 2749-2751.
[8] K. W. Oh, R. Rong, C. H. Ahn, Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration, J. Micromech. Microeng. 15 (2005) 2449.
[9] H. Q. Li, D. C. Roberts, J. L. Steyn, K. T. Turner, O. Yaglioglu, N. W. Hagood, S. M. Spearing, M. A. Schmidt, Fabrication of a high frequency piezoelectric microvalve, Sens. Actuators, A 111 (2004) 51-56.
[10] T. Rogge, Z. Rummler, W. K. Schomburg, Polymer micro valve with a hydraulic piezo-drive fabricated by the AMANDA process, Sens. Actuators. A 110 (2004) 206-212.
[11] L. Yobas, D. M. Durand, G. G. Skebe, F. J. Lisy, M. A. Huff, A novel integrable microvalve for refreshable braille display system, J. Microelectromechanical syst. 12 (2003) 252-263.
[12] X. E. Yang, A. Holke, S. A. Jacobson, J. H. Lang, M. A. Schmidt, S. D. Umans, An electrostatic, on/off microvalve designed for gas fuel delivery for the MIT microengine, J. Microelectromechanical Syst. 13 (2004) 660-668.
[13] Q. Zhang, Z. Zhang, H. Zhou, Z. Xie, L. Wen, Z. Liu, L. Wen, X. Diao, Redox switch of ionic transport in conductive polypyrrole-engineered unipolar nanofluidic diodes, Nano Res. 10 (2017) 3715-3725.
[14] Y. H. Weng, Y. E. Liang, Y. J. Sheng, H. K. Tsao, Controlling nanodrop passage through capillary nanovalves by adjusting lyophilic crevice structure, J. Phys. Chem. C 122 (2018) 2231-2237.
[15] H. Liu, G. Cao, Effectiveness of the Young-Laplace equation at nanoscale, Sci. Rep. 6 (2016) 23936.
[16] M. Matsumoto, K Tanaka, Nano bubble—Size dependence of surface tension and inside pressure, Fluid Dyn. Res. 40 (2008) 546.
[17] H. Ibach, Physics of surfaces and interfaces, (Berlin: Springer 2006).
[18] J. Pellicer, V. Garcia-Morales, M. J. Hernandez, On the demonstration of the Young-Laplace equation in introductory physics courses, Phys. Educ. 35 (2000) 126.
[19] J. Berthier, K. A. Brakke, The physics of microdroplets, (John Wiley & Sons. 2012).
[20] P. B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68 (2003) 066702.
[21] K. C. Chu, Y. J. Sheng and H. K. Tsao, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn′s equation and extended menisci J. colloid interface Sci. 538 (2019) 340-348.
[22] K. C. Chu, S. W. Hu, H. K. Tsao, Y. J. Sheng, Strong competition between adsorption and aggregation of surfactant in nanoscale systems, J. colloid interface Sci. 553 (2019) 674-681.
[23] C. Chen, L. Zhuang, X. Li, J. Dong and J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28 (2011) 1330-1336.
[24] A. Ghoufi, J. Emile and P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E--Soft Matter 36 (2013) 10.
[25] M. Arienti, W. Pan, X. Li and G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134 (2011) 204114.
[26] R. D. Groot, P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107 (1997) 4423-4435.
[27] J. Xu, C. Yang, Y. J. Sheng, H. K. Tsao, Apparent hydrodynamic slip induced by density inhomogeneities at fluid–solid interfaces, Soft matter 11 (2015) 6916-6920.
[28] Y. L. Yang, Y. J. Sheng, H. K. Tsao, Branching pattern effect and co-assembly with lipids of amphiphilic Janus dendrimersomes, Phys. Chem. Chem. Phys. 20 (2018) 27305-27313.
[29] Y. L. Yang, Y. J. Sheng, H. K. Tsao, Solid-supported polymer bilayers formed by coil–coil block copolymers, Soft matter 12 (2016) 6442-6450.
[30] C. Cupelli, B. Henrich, T. Glatzel, R. Zengerle, M. Moseler, M. Santer, Dynamic capillary wetting studied with dissipative particle dynamics, New J. Phys. 10 (2008) 043009.
[31] C. Chen, C. Gao, L. Zhuang, X. Li, P. Wu, J. Dong, J. Lu, A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage, Langmuir 26 (2010) 9533-9538.
[32] S. Jamali, A. Boromand, S. Khani, J. Wagner, M. Yamanoi, J. Maia, Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory, J. Chem. Phys. 142 (2015) 164902.
[33] S. Y. Trofimov, E. L. F. Nies, M. A. J. Michels, Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures, J. Chem. Phys. 117 (2002) 9383-9394.
[34] Y. F. Chen, Z. Wang, K. C. Chu, H. Y. Chen, Y. J. Sheng, H. K. Tsao, Hydrodynamic interaction induced breakdown of the state properties of active fluids, Soft matter, 14 (2018) 5319-5326.
[35] A. Ghoufi and P. Malfreyt, Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods, Phys. Rev. E 82 (2010) 016706.
[36] J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817-829.
[37] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning, Langmuir, 27 (2011) 6890-6896.
[38] C. J. Wu, Y. F. Li, W. Y. Woon, Y. J. Sheng, H. K. Tsao, Contact angle hysteresis on graphene surfaces and hysteresis-free behavior on oil-infused graphite surfaces, Appl. Surf. Sci. 385 (2016) 153-161.
[39] C. J. Wu, V. Singh, Y. J. Sheng, H. K. Tsao, Forced spreading of aqueous solutions on zwitterionic sulfobetaine surfaces for rapid evaporation and solute separation, Langmuir 33 (2017) 7569-7574.
[40] C. C. Chang, C. J. Wu, Y. J. Sheng, H. K. Tsao, Resisting and pinning of a nanodrop by trenches on a hysteresis-free surface, J. Chem. Phys. 145 (2016) 164702.
[41] P. M. Arnott, S. Howorka, A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes, ACS Nano 13 (2019) 3334-3340.
[42] B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu and A. K. Geim, Molecular transport through capillaries made with atomic-scale precision, Nature 538 (2016) 222.

5-5 References
[1] S. Zhao, L. Restrepo-Pérez, M. Soskine, G. Maglia, C. Joo, C. Dekker, A. Aksimentiev, Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate, ACS nano 13 (2019) 2398-2409.
[2] Y. Feng, Y. Zhang, C. Ying, D. Wang, C. Du, Nanopore-based fourth-generation DNA sequencing technology, Genomics, proteomics & bioinformatics 13 (2015) 4-16.
[3] S. Li, C. Cao, J. Yang, Y. T. Long, Detection of peptides with different charges and lengths by using the aerolysin nanopore, ChemElectroChem 6 (2019) 126-129.
[4] Y. Wang, L. Q Gu, K. Tian, The aerolysin nanopore: from peptidomic to genomic applications, Nanoscale 10 (2018) 13857-13866.
[5] H. Bayley, Piercing insights, Nature 459 (2009) 651-652.
[6] A. Sławek, J. M. Vicent-Luna, B. Marszałek, B. Gil, R. E. Morris, W. Makowski, S. Calero, Gate-Opening Mechanism of Hydrophilic-Hydrophobic Metal-Organic Frameworks: Molecular Simulations and Quasi-Equilibrated Desorption, Chem. Mater. 30 (2018) 5116-5127.
[7] W. Si, J. Sha, Q. Sun, Z. He, L. Wu, C. Chen, S. Yu, Y. Chen, Shape characterization and discrimination of single nanoparticles using solid-state nanopores, Analyst 145 (2020) 1657-1666.
[8] R. Duan, F. Xia, L. Jiang, Constructing tunable nanopores and their application in drug delivery, ACS nano 7 (2013) 8344-8349.
[9] N. Ž Knežević, G. N. Kaluđerović, Silicon-based nanotheranostics, Nanoscale 9 (2017) 12821-12829.
[10] S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J. A. Golovchenko, Graphene as a subnanometre trans-electrode membrane, Nature 467 (2010) 190-193.
[11] H. Cong, X. Xu, B. Yu, Z. Yang, X. Zhang, A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation, Sci. Rep. 6 (2016) 1-10.
[12] J. Wilson, A. Aksimentiev, Water-compression gating of nanopore transport, Phys. Rev. Lett. 120 (2018) 268101.
[13] T. Y. Wang, H. K. Tsao, Y. J. Sheng, Perforated Vesicles of ABA Triblock Copolymers with ON/OFF-Switchable Nanopores, Macromolecules 53 (2020) 10582-10590.
[14] K. C. Chu, H. K. Tsao, Y. J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, J, Colloid Interf. Sci. 560 (2020) 485-491.
[15] H. Liu, G. Cao, Effectiveness of the Young-Laplace equation at nanoscale, Sci. Rep. 6 (2016) 23936.
[16] M. Matsumoto, K Tanaka, Nano bubble—Size dependence of surface tension and inside pressure, Fluid Dyn. Res. 40 (2008) 546.
[17] H. Ibach, Physics of surfaces and interfaces, (Berlin: Springer 2006).
[18] J. Pellicer, V. Garcia-Morales, M. J. Hernandez, On the demonstration of the Young-Laplace equation in introductory physics courses, Phys. Educ. 35 (2000) 126.
[19] J. Berthier, K. A. Brakke, The physics of microdroplets, (John Wiley & Sons. 2012).
[20] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning, Langmuir, 27 (2011) 6890-6896.
[21] C. J. Wu, Y. F. Li, W. Y. Woon, Y. J. Sheng, H. K. Tsao, Contact angle hysteresis on graphene surfaces and hysteresis-free behavior on oil-infused graphite surfaces, Appl. Surf. Sci. 385 (2016) 153-161.
[22] C. J. Wu, V. Singh, Y. J. Sheng, H. K. Tsao, Forced spreading of aqueous solutions on zwitterionic sulfobetaine surfaces for rapid evaporation and solute separation, Langmuir 33 (2017) 7569-7574.
[23] C. C. Chang, C. J. Wu, Y. J. Sheng, H. K. Tsao, Resisting and pinning of a nanodrop by trenches on a hysteresis-free surface, J. Chem. Phys. 145 (2016) 164702.
[24] P. B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68 (2003) 066702.
[25] K. C. Chu, Y. J. Sheng and H. K. Tsao, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn′s equation and extended menisci J. Colloid Interface Sci. 538 (2019) 340-348.
[26] K. C. Chu, S. W. Hu, H. K. Tsao, Y. J. Sheng, Strong competition between adsorption and aggregation of surfactant in nanoscale systems, J, Colloid Interf. Sci. 553 (2019) 674-681.
[27] C. Chen, L. Zhuang, X. Li, J. Dong and J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28 (2011) 1330-1336.
[28] A. Ghoufi, J. Emile and P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E--Soft Matter 36 (2013) 10.
[29] M. Arienti, W. Pan, X. Li and G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134 (2011) 204114.
[30] P. Espanol, P. Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett. 30 (1995) 191.
[31] R. D. Groot, P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, J. Chem. Phys. 107 (1997) 4423-4435.
[32] H. C. Tsai, Y. L. Yang, Y. J. Sheng, H. K. Tsao, Formation of Asymmetric and Symmetric Hybrid Membranes of Lipids and Triblock Copolymers, Polymers 12 (2020) 639.
[33] Y. L. Yang, M. Y. Chen, H. K. Tsao, Y. J. Sheng, Dynamics of bridge–loop transformation in a membrane with mixed monolayer/bilayer structures, Phys. Chem. Chem. Phys. 20 (2018) 6582-6590.
[34] P. B. Warren, No-go theorem in many-body dissipative particle dynamics, Phys. Rev. E 87 (2013) 045303.
[35] Y. T. Cheng, K. C. Chu, H. K. Tsao, Y. J. Sheng, Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets, J, Colloid Interf. Sci. 578 (2020) 69-76.
[36] J. H. Irving, J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817–829.
[37] A. Ghoufi, P. Malfreyt, Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods, Phys. Rev. E 82 (2010) 016706.
[38] S. Jamali, A. Boromand, S. Khani, J. Wagner, M. Yamanoi, J. Maia, Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory, J. Chem. Phys. 142 (2015) 164902.
[39] S. Y. Trofimov, E. L. F. Nies, M. A. J. Michels, Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures, J. Chem. Phys. 117 (2002) 9383-9394.
[40] R. Clausius, XVI. On a mechanical theorem applicable to heat, London Edinburgh Dublin Philos. Mag. J. Sci. 40 (1870) 122.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2021-6-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明