博碩士論文 107324032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.144.244.243
姓名 許育瑄(Yu-Hsuan Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(The Effect of Pd and Cu Co-catalysts on the Activity of TiO2 Photocatalyst)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 這項研究的目的是研究鈀和銅助催化劑對二氧化鈦光催化活性的影響。通過初濕含浸法製備了摻雜金屬的二氧化鈦。據推測,添加金屬可以減少電子-空穴複合的可能性並提高活性。 X射線衍射、比表面積和孔隙率分析儀、透射電子顯微鏡和高分辨率透射電子顯微鏡用於表徵催化劑的粒徑、比表面積、孔體積、孔徑大小、形態和金屬分佈。結果表明,二氧化鈦的粒徑和形態沒有發生顯著變化且金屬均勻分散在二氧化鈦的表面上。亞甲基藍可以用於測試在紫外線照射下的光降解活性。通過UV /可見光/ NIR分光光度計測定水中亞甲基藍的濃度。結果表明,合適的金屬含量和鍛燒溫度可以有效地提高二氧化鈦的光降解效率。鈀和銅均在煅燒溫度為300℃及金屬含量為0.5 wt.%具有最高的光分解活性。TiO2的活性隨反應溫度的升高而增加。在0-50°C下,Pd /TiO2表現出相同的趨勢。但是當溫度高達70°C時,TiO2¬的反應速率略為下降,而Pd/TiO2變得最差。與其他溫度相比,Cu/TiO2則在室溫下的活性更高。
摘要(英) The aim of this study was to investigate the effects of Pd and Cu co-catalyst on the photocatalytic activity of TiO2. The doped metal on the TiO2 was prepared by incipient-wetness impregnation method. It was hypothesized that adding metal can reduce the possibility of electron-hole recombination and improve activity. X-ray diffraction, specific surface and porosimetry analyzer, transmission electron microscopy, and high-resolution transmission electron microscopy were used to characterize the particle size, specific surface area, pore volume, pore size, morphology, and metal distribution of the catalysts. The results show that the particle size and morphology of TiO2 did not change significantly, as expected. The metal was uniformly dispersed on the surface of TiO2. Methylene blue was used to test the photodegradation activity under UV light irradiation. The concentration of methylene blue in water was determined by UV/Visible/NIR spectrophotometer. The results show that the suitable metal content and calcination temperature could effectively increase the photodegradation efficiency of TiO2. The calcining temperature of 300 ℃ and the palladium and copper metal content of 0.5 wt.% had the highest photodecomposition activity among all samples. At 0-50°C, the activity of TiO2 and Pd /TiO2 increases with the increase of reaction temperature. But when the temperature is as high as 70°C, the reaction rate of TiO2 drops slightly, and Pd/TiO2 becomes the worst. Cu/TiO2 is more active at room temperature than other temperatures.
關鍵字(中) ★ 光觸媒
★ 二氧化鈦
★ 鈀
★ 銅
★ 含浸法
★ 光催化降解
關鍵字(英) ★ Photocatalyst
★ Titanium dioxide
★ Pd-doping
★ Cu-doping
★ Impregnation method
★ Photocatalytic degradation
論文目次 中文摘要 1
Abstract 2
Acknowledgements 3
Table of Contents 3
List of Tables 6
List of Figures 7
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Titanium dioxide (TiO2) photocatalysis 3
2.1.1 Polymorphs of TiO2 3
2.1.2 Mechanism of TiO2 photocatalysis 6
2.2 Modification of TiO2 photocatalysis 10
2.3 Palladium catalyst 11
2.4 Copper catalyst 15
2.5 Impregnation method 18
Chapter 3 Experimental 19
3.1 Materials 19
3.2 Catalysts preparation 19
3.2.1 Synthesis of Cu/ TiO2 19
3.2.2 Synthesis of Pd/TiO2 powders 20
3.3 Catalysts characterization 21
3.3.1 X-Ray Diffraction (XRD) 21
3.3.2 Specific surface and porosimetry analyzer (ASAP) 23
3.3.3 Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM) 23
3.4 UV/Visible/NIR Spectrophotometer 24
3.5 Photocatalytic activity under UV light irradiation 24
Chapter 4 Photoactivity of Pd/TiO2 27
Abstract 27
4.1 Introduction 27
4.2 Results and discussion 28
4.2.1 Characterization of Pd/TiO2 powders 28
4.2.2 Photocatalytic degradation of methylene blue aqueous solution 37
4.2.3 The effect of reaction temperatures 44
4.3 Conclusions 49
Chapter 5 Photoactivity of Cu/TiO2 51
Abstract 51
5.1 Introduction 51
5.2 Results and discussion 52
5.2.1 Characterization of Cu/TiO2 powders 52
5.2.2 Photocatalytic degradation of methylene blue aqueous solution 60
5.2.3 The effect of reaction temperatures 68
5.3 Conclusions 70
Chapter 6 Comparison of the Effects of Pd and Cu Cocatalysts on the Photocatalytic Activity of TiO2 72
Chapter 7 Summary 76
References 78
參考文獻 Abdelaal, M. Y., & Mohamed, R. M. (2013). Novel Pd/ TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. J. Alloys and Compounds, 576, 201–207.
Abdullah, H., Khan, M. M. R., Ong, H. R., & Yaakob, Z. (2017). Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. J. CO2 Utilization, 22, 15–32.
Amar Kundu, & Aparna Mondal. (2019). Kinetics, isotherm, and thermodynamic studies of methylene blue selective adsorption and photocatalysis of malachite green from aqueous solution using layered Na-intercalated Cu-doped Titania. Applied Clay Science, Volume 183.
Badvi, K., & Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. J. Cleaner Production, 280, 124518.
Biyoghe Bi Ndong, L., Ibondou, M. P., Gu, X., Lu, S., Qiu, Z., Sui, Q., & Mbadinga, S. M. (2014). Enhanced Photocatalytic Activity of TiO2 Nanosheets by Doping with Cu for Chlorinated Solvent Pollutants Degradation. Industrial & Engineering Chemistry Research, 53(4), 1368–1376.
Blaser, H.-U., Indolese, A., Schnyder, A., Steiner, H., & Studer, M. (2001). Supported palladium catalysts for fine chemicals synthesis. J. Molecular Catalysis A: Chemical, 173(1-2), 3–18.
Camposeco, R., Castillo, S., Mejía-Centeno, I., Navarrete, J., & Marín, J. (2014). Characterization of physicochemical properties of Pd/TiO 2 nanostructured catalysts prepared by the photodeposition method. Materials Characterization, 95, 201–210.
Chan, C.-C., Chang, C.-C., Hsu, W.-C., Wang, S.-K., & Lin, J. (2009). Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. J. Chemical Engineering, 152(2-3), 492–497.
Chen, S., & Liu, Y. (2007). Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 67(5), 1010–1017.
Colón, G., Maicu, M., Hidalgo, M. C., & Navío, J. A. (2006). Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 67(1-2), 41–51.
Dambournet, D., Belharouak, I., & Amine, K. (2010). Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties†. Chemistry of Materials, 22(3), 1173–1179.
Dao AQ, Zheng B, Liu H, Dong S, Thi TT, Fu C, Liu H. (2016) Facile Synthesis of r-GO@Pd/ TiO2 Nanocomposites and Its Photocatalytic Activity Under Visible Light. J. Nanosci Nanotechnol. Apr;16(4):3557-63.
Di Paola, A., Garcı́a-López, E., Marcı̀, G., Martı́n, C., Palmisano, L., Rives, V., & Maria Venezia, A. (2004). Surface characterisation of metal ions loaded TiO2 photocatalysts: structure–activity relationship. Applied Catalysis B: Environmental, 48(3), 223–233.
Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., & He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146.
Gao, F., Jiang, J., Du, L., Liu, X., & Ding, Y. (2018). Stable and Highly Efficient Cu/ TiO2 Nanocomposite Photocatalyst Prepared through Atomic Layer Deposition. Applied Catalysis A: General.
García-Zaleta, D. S., Torres-Huerta, A. M., Domínguez-Crespo, M. A., García-Murillo, A., Silva-Rodrigo, R., & González, R. L. (2016). Influence of Phases Content on Pt/TiO2, Pd/TiO2Catalysts for Degradation of 4-Chlorophenol at Room Temperature. J. Nanomaterials, 2016, 1–15.
Garlisi, C., Scandura, G., Szlachetko, J., Ahmadi, S., Sa, J., & Palmisano, G. (2016). E-beam evaporated TiO2 and Cu-TiO2 on glass: Performance in the discoloration of methylene blue and 2-propanol oxidation. Applied Catalysis A: General, 526, 191–199.
Grassi, M., Kaykioglu, G., Belgiorno, V., & Lofrano, G. (2012). Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process. Emerging Compounds Removal from Wastewater, 15–37.
Guan, H., Zhou, X., Wen, W., Jin, B., Li, J., & Zhang, S. (2018). Efficient and Robust Cu/TiO2 Nanorod Photocatalysts for Simultaneous Removal of Cr(VI) and Methylene Blue under Solar Light. J. the Chinese Chemical Society, 65(6), 706–713.
Hariharan, D., Thangamuniyandi, P., Selvakumar, P., Devan, U., Pugazhendhi, A., Vasantharaja, R., & Nehru, L. C. (2019). Green approach synthesis of Pd@TiO2 nanoparticles: characterization, visible light active picric acid degradation and anticancer activity. Process Biochemistry.
Ibhadon, A., & Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts, 3(1), 189–218.
Janczarek, M., & Kowalska, E. (2017). On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts, 7(11), 317.
Jung, M., Scott, J., Ng, Y. H., Jiang, Y., & Amal, R. (2014). CuO x dispersion and reducibility on TiO2 and its impact on photocatalytic hydrogen evolution. International J. Hydrogen Energy, 39(24), 12499–12506.
Kant, R. (2012) Textile dyeing industry an environmental hazard. Natural Science, 4, 22-26.
Khan, H., Usen, N., & Boffito, D. C. (2019). Spray-dried microporous Pt/TiO2 degrades 4-chlorophenol under UV and visible light. J. Environmental Chemical Engineering, 7(4), 103267.
Kumar, Azad. (2017). A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Material Science & Engineering International Journal. 1. 10.15406/mseij.2017.01.00018.
Kurtoglu, M. E., Longenbach, T., & Gogotsi, Y. (2011). Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International J. Applied Glass Science, 2(2), 108–116.
Kuvarega, A. T., Krause, R. W. M., & Mamba, B. B. (2014). Comparison between Base Metals and Platinum Group Metals in Nitrogen, M Codoped TiO2(M = Fe, Cu, Pd, Os) for Photocatalytic Removal of an Organic Dye in Water. J. Nanomaterials, 2014, 1–12.
Landmann, M., Rauls, E., & Schmidt, W. G. (2012). The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics: Condensed Matter, 24(19), 195503.
Lee, H., Shin, M., Lee, M., & Hwang, Y. J. (2015). Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Applied Catalysis B: Environmental, 165, 20–26.
Li, Z., Wang, C., Su, Z., Zhang, W., Wang, N., Mele, G., & Li, J. (2020). New porphyrin/Cu(II) porphyrin-TiO2 nanohybrids for improved photocatalytic oxidation and reduction activities. Materials Chemistry and Physics, 123228.
Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735–758.
Liu, L., & Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114(19), 9890–9918.
Luan Yong, Fu Pingfeng, Dai Xuegang*, Du Zhuwei. (2004). Effects of Metal Ion Dopants on TiO2 Photocatalysis[J]. Progress in Chemistry, 16(05): 738-.
Mathew, S., Ganguly, P., Rhatigan, S., Kumaravel, V., Byrne, C., Hinder, S., … Pillai, S. (2018). Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Applied Sciences, 8(11), 2067.
Meng, A., Zhang, L., Cheng, B., & Yu, J. (2019). Dual Cocatalysts in TiO2 Photocatalysis. Advanced Materials, 1807660.
Meng, Y., Xia, S., Pan, G., Xue, J., Jiang, J., & Ni, Z. (2017). Preparation and photocatalytic activity of composite metal oxides derived from Salen-Cu(II) intercalated layered double hydroxides. Korean Journal of Chemical Engineering, 34(8), 2331–2341.
Merenda, A., Weber, M., Bechelany, M., Allioux, F.-M., Hyde, L., Kong, L., & Dumée, L. F. (2019). Fabrication of Pd-TiO2 nanotube photoactive junctions via Atomic Layer Deposition for persistent pesticide pollutants degradation. Applied Surface Science, 483, 219–230.
Moongraksathum, B., & Chen, Y.-W. (2017). CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J. Sol-Gel Science and Technology, 82(3), 772–782.
Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189.
Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001), Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 203, 82–86.
P. Magalhães, L. Andrade, O. C. Nunes, A. Mendes. (2017). Titanium dioxide photocatalysis: fundamentals and application on photoinactivation, Rev. Adv. Mater. Sci. 51, 91-129.
Parra, S., Elena Stanca, S., Guasaquillo, I., & Ravindranathan Thampi, K. (2004). Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B: Environmental, 51(2), 107–116.
Pava-Gómez, B., Vargas-Ramírez, X., & Díaz-Uribe, C. (2018). Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films. J. Photochemistry and Photobiology A: Chemistry, 360, 13–25.
Pawar, M., Topcu Sendoğdular, S., & Gouma, P. (2018). A Brief Overview of TiO2 Photocatalyst for Organic Dye Remediation: Case Study of Reaction Mechanisms Involved in Ce-TiO2 Photocatalysts System. J. Nanomaterials, 2018, 1–13.
Peña, M., Coca, M., González, G., Rioja, R., & Garcı́a, M. T. (2003). Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere, 51(9), 893–900.
Perego, C., & Villa, P. (1997). Catalyst preparation methods. Catalysis Today, 34(3-4), 281–305.
Raghu, S., & Ahmed Basha, C. (2007). Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. J. Hazardous Materials, 149(2), 324–330.
Rajbongshi, B. M. (2020). Photocatalyst: mechanism, challenges, and strategy for organic contaminant degradation. Handbook of Smart Photocatalytic Materials, 127–149.
Sakthivel, S., Shankar, M.., Palanichamy, M., Arabindoo, B., Bahnemann, D.., & Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001–3008.
Salimi, A., & Roosta, A. (2019). Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochimica Acta, 675, 134–139.
Sangpour, P., Hashemi, F., & Moshfegh, A. Z. (2010). Photoenhanced Degradation of Methylene Blue on Cosputtered M: TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study. J. Physical Chemistry C, 114(33), 13955–13961.
Sunada, K., Watanabe, T., & Hashimoto, K. (2003). Bactericidal Activity of Copper-Deposited TiO2Thin Film under Weak UV Light Illumination. Environmental Science & Technology, 37(20), 4785–4789.
Tran, T.-K., Chiu, K.-F., Lin, C.-Y., & Leu, H.-J. (2017). Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. International J. Hydrogen Energy, 42(45), 27741–27748.
Tseng, I.-H., Chang, W.-C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37(1), 37–48.
Tseng, I.-H., Wu, J. C.., & Chou, H.-Y. (2004). Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catalysis, 221(2), 432–440.
Türgay, O., Ersöz, G., Atalay, S., Forss, J., & Welander, U. (2011). The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 79(1), 26–33.
WebElements, https://www.webelements.com, accessed April 2021.
Wold, A. (1993). Photocatalytic properties of titanium dioxide (TiO2). Chemistry of Materials, 5(3), 280–283.
Wu, G., Guan, N., & Li, L. (2011). Low temperature CO oxidation on Cu–Cu2O/TiO2 catalyst prepared by photodeposition. Catalysis Science & Technology, 1(4), 601.
Wu, M.-C., Wu, P.-Y., Lin, T.-H., & Lin, T.-F. (2018). Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment. Applied Surface Science, 430, 390–398.
Xin, B., Wang, P., Ding, D., Liu, J., Ren, Z., & Fu, H. (2008). Effect of surface species on Cu- TiO2 photocatalytic activity. Applied Surface Science, 254(9), 2569–2574.
Yan, Y., Yu, Y., Huang, S., Yang, Y., Yang, X., Yin, S., & Cao, Y. (2017). Adjustment and Matching of Energy Band of TiO2-Based Photocatalysts by Metal Ions (Pd, Cu, Mn) for Photoreduction of CO2 into CH4. J. Physical Chemistry C, 121(2), 1089–1098.
Zanella, R., Avella, E., Ramírez-Zamora, R. M., Castillón-Barraza, F., & Durán-Álvarez, J. C. (2017). Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2. Environmental Technology, 39(18), 2353–2364.
Zhou, W., Guan, Y., Wang, D., Zhang, X., Liu, D., Jiang, H., … Chen, S. (2014). PdO/ TiO2 and Pd/ TiO2 Heterostructured Nanobelts with Enhanced Photocatalytic Activity. Chemistry - An Asian Journal, 9(6), 1648–1654.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2021-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明