博碩士論文 108324061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.142.55.2
姓名 李懿芸(Yi-Yun Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 薑黃素微脂體的製備與安定性之研究
(Preparation of Curcuminoid-loaded Liposomes)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究的目的是透過薄膜水合法製備類薑黃素微脂體之溶液,將類薑黃素包覆於微脂體中,避免類薑黃素被溫度和光線分解,並且改善類薑黃素的水溶性,進而提升生物利用度。本研究以乳化劑如tween 80、tween 20、tween 80/span 80、和 tween 80/span 85,以及磷脂質和膽固醇,作為微脂體的包覆材料。此外,以乙醇而非傳統方法中以氯仿做為溶劑,形成球狀的雙分子磷脂層膜。本研究改變了不同比例及種類的乳化劑來製備微脂體溶液,並將樣品放置於 4 ℃ 的環境下儲存,對其做安定性的測試。此外,挑選包覆率佳的樣品分別放置在室溫及40 ℃ 的環境下進行安定性的測試。最後,挑選包覆率最佳的樣品進行放大測試,檢驗類薑黃素微脂體之溶液商業化的潛力。本研究中利用紫外光-可見光-近紅外光分光光譜儀測量類薑黃素微脂體之溶液濃度,並計算其包覆率及類薑黃素總濃度。此外,利用動態光散射分析儀做粒徑測量,並以光學顯微鏡及穿透式電子顯微鏡對其外觀進行觀測。最後找出最佳的合成比例為Phosphatidylcholine:Cholesterol:Tween 80 = 4:1:50 (reagent grade),且樣品存放一百天後仍然穩定。
摘要(英) The purpose of this study was to prepare a curcuminoid-loaded liposome solution through the thin film hydration method to encapsulate curcuminoid in the liposomes to prevent curcuminoid from being decomposed at high temperature and light, and to improve the solubility of curcuminoid in water, thereby enhancing the bioavailability. In this study, emulsifiers such as tween 80, tween 20, tween 80/span80, and tween80/span 85, as well as phosphatidylcholine and cholesterol, were used as liposome coating materials. Furthermore, ethanol was used as a solvent, instead of chloroform in the traditional method, to form a spherical bimolecular phospholipid layer membrane. In this study, different ratios and types of emulsifiers were used to prepare liposome solutions, and the samples were stored at 4℃ to test their stability. Furthermore, select samples with good encapsulation efficiency and place them at room temperature and 40℃ for stability testing. Finally, the samples with the best encapsulation efficiency were selected for scale-up testing to test the commercialization potential of curcuminoid-loaded liposome solution. UV-visible-near-infrared spectroscopy was used to measure the concentration of curcuminoid liposomes, and to determine the encapsulation efficiency and total curcuminoid concentration. The dynamic light scattering was used for particle size measurement, and its appearance was observed with an optical microscope and transmission electron microscopy. The best preparation condition was phosphatidylcholine: cholesterol: tween 80 = 4: 1: 50, and the sample was very stable after 100 days of storage.
關鍵字(中) ★ 類薑黃素
★ 微脂體
★ 包覆材料
★ 生物材料
★ 生醫材料
★ 營養補充物
關鍵字(英) ★ Curcuminoids
★ liposome
★ encapsulation
★ biomaterial
論文目次 中文摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Tables vi
List of Figures viii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 1
2.1 Curcuma longa 1
2.1.1 Distribution of Curcuma longa 1
2.1.2 History of Curcuma longa 2
2.2 Curcuminoid 3
2.2.2 Characteristics of curcuminoids 4
2.2.3 Safety of curcumin 7
2.2.4 Application of curcumin 8
2.3 Liposome technology 12
2.3.1 Composition of liposome 12
2.3.2 Methods of liposome preparation 13
2.4 Hydrophile Lipophilic Balance 17
CHAPTER 3 EXPERIMENTAL 21
3.1 Materials 21
3.2 Preparation of curcuminoids-loaded liposome solution 21
3.3 Homogenizer 23
3.4 Determination of total curcuminoids in liposome 24
3.3.1 Optical microscopy (OM) 24
3.3.2 Transmission electron microscopy (TEM) 25
3.3.3 Ultraviolet-Visible-near-IR Spectroscopy (UV-Vis-NIR) 26
3.3.4 Dynamic Light Scattering (DLS) 27
CHAPTER 4 RESULTS AND DISCUSSION 29
4.1 Introduction 29
4.2 Effects of surfactant on the encapsulation efficiency 30
4.2.1 Reagent grade polysorbate 80 31
4.2.2 Technical grade polysorbate 80 40
4.2.3 Technical grade polysorbate 20 46
4.2.4 Technical grade polysorbate 80/ Sorbitan Monooleate 51
4.2.5 Technical grade polysorbate 80/ Sorbitan Trioleate 57
4.2.6 Conclusion 63
4.3 Effects of storage temperature 71
4.3.1 Encapsulation efficiency 71
4.3.2 particle size 77
4.3.3 Appearance study 78
4.4 Scale up test 81
4.4.1 Encapsulation efficiency 82
4.4.2 particle size 85
4.4.3 Appearance study 86
CHAPTER 5 CONCLUSIONS 88
REFERENCES 90
參考文獻 Adefegha, S. A., Oboh, G. (2012). In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe2+-induced lipid peroxidation in rat pancreas. Asian Pacific Journal of Tropical Biomedicine, 2(10), 774–781.
Ahmed, K. S., Hussein, S. A., Ali, A. H., Korma, S. A., Lipeng, Q., & Jinghua, C. (2018). Liposome: composition, characterization, preparation, and recent innovation in clinical applications. Journal of Drug Targeting, 1–58.
Ajay, G., Ajaikumar B. K., Bharat B. A. (2008). Curcumin as “Curecumin”: From kitchen to clinic. , 75(4), 787–809.
Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102–.
Akram M, Chowdhury A, Chakrabarti S. Removal of Rhodamine B Dye from Wastewater by Ultrasound-Assisted Fenton Process: A Comparison between Bath and Probe Type Sonicators. Environ Sci Ind J. 2016;12(10):115.
Anna K., Dorota B., Gzyl-Malcher, B., Mariusz K., Radosław L., Maria N. (2011). Interaction of curcumin with lipid monolayers and liposomal bilayers. , 88(1), 231–239.
Artiga-Artigas, M., Lanjari-Pérez, Y., Martín-Belloso, O. (2018). Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chemistry, 266, 466–474.
Asadi, A., Pourfattah, F., Miklós Szilágyi, I., Afrand, M., Zyla, G., Seon Ahn, H., … Mahian, O. (2019). Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry, 104701.
Baum, L., Lam, C.W., Cheung, S.K., Kwok, T., Lui, V., Tsoh, J., Lam, L., Leung, V., Hui, E., Ng, C., Woo, J., Chiu, H.F., Goggins, W.B., Zee, B.C., Cheng, K.F., Fong, C.Y., Wong, A., Mok, H., Chow, M.S., Ho, P.C., Ip, S.P., Ho, C.S., Yu, X.W., Lai, C.Y., Chan, M.H., Szeto, S., Chan, I.H., Mok, V. (2008), Six-Month Randomized, Placebo-Controlled, Double-Blind, Pilot Clinical Trial of Curcumin in Patients With Alzheimer Disease. Journal of Clinical Psychopharmacology, 28, 110–113.
Bradford, P. G. (2013). Curcumin and obesity. BioFactors, 39(1), 78–87.
Chainani-Wu, N. (2003). Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J. Altern. Complement. Med. 9, 161–168
Charcosset, C., Juban, A., Valour, J. P., Urbaniak, S., Fessi, H. (2015). Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chemical Engineering Research and Design, 94(), 508–515.
Chen, H.W. (2007, March), New favorite of pharmacy: turmeric. Scientific American, 61, 40-43.
Chen, Y.Z. (2020), Clinical application of curcumin. J. Taiwan Medical., 63, 341-345.
Chen, Y., Wu, Q., Zhang, Z., Yuan, L., Liu, X., Zhou, L. (2012). Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules, 17(12), 5972–5987.
Chen, Z., Xue, J., Shen, T., Mu, S., Fu, Q. (2015). Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. International Journal of Molecular Medicine, 37, 329–338
Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 21, 2895–2900.
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. (2012). Curcumin Extract for Prevention of Type 2 Diabetes. Diabetes Care, 35(11), 2121–2127.
Sepúlveda, C. T., Alemán, A., Zapata, J. E., Montero, M. P., Gómez-Guillén, M. C. (2021) Characterization and storage stability of spray dried soy-rapeseed lecithin/trehalose liposomes loaded with a tilapia viscera hydrolysate. Innovative Food Science & Emerging Technologies, 102708(12)
Davies, J.T. (1957) A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Gas/Liquid and Liquid/Liquid Interface (Proceedings of the International Congress of Surface Activity), 426–38
Nardo, V.D., Gianfaldoni, S., Tchernev, G., Wollina, U., Barygina, V., Lotti, J., Daaboul, F., Lotti, T. (2018). Use of Curcumin in Psoriasis. Open Access Macedonian Journal of Medical Sciences, 6(1)
Hudiyanti, D., Al Khafiz, M. F., Anam, K., Siahaan, P., Suyati, L. (2021). Assessing encapsulation of curcumin in cocoliposome: In vitro study. Open Chemistry, 19, 358–366
Eroğlu, İ., & İbrahim, M. (2019). Liposome-Ligand Conjugates: A Review on the Current State of Art. Journal of Drug Targeting, 1–51.
Feng, T., Wei, Y., Lee, R., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, Volume 12, 6027–6044.
Opawale, F. O., Burgess, D. J. (1998). Influence of Interfacial Rheological Properties of Mixed Emulsifier Films on the Stability of Water-in-Oil-in-Water Emulsions. , 50(9), 965–973.
Ghosh, S.S., Gehr, T.W., Ghosh, S. (2014). Curcumin and Chronic Kidney Disease (CKD): Major Mode of Action through Stimulating Endogenous Intestinal Alkaline Phosphatase. Molecules, 19(12), 20139–20156.
Goel, A., Kunnumakkara, A. B., and Aggarwal, B. B. (2008). Curcumin as“Curecumin”: from kitchen to clinic. Biochem. Pharmacol. 75, 787–809.
GóMEZ-ESTACA, J., GAVARA, R. & HERNáNDEZ-MUñOZ, P. (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science & Emerging Technologies, 29, 302-307
Griffin, William C., (1949) Classification of Surface-Active Agents by ′HLB′, Journal of the Society of Cosmetic Chemists, 1 (5): 311–26
Griffin, W. C. (1954) Calculation of HLB Values of Non-Ionic Surfactants, Journal of the Society of Cosmetic Chemists, 5 (4): 249–56
Guo, Q., Su, J., Shu, X., Yuan, F., Mao, L., Liu, J., Gao, Y., (2020) Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin, Food Hydrocolloids.
GUPTA, S. C., PATCHVA, S. & AGGARWAL, B. B. (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. Aaps j, 15, 195-218.
He, Y., Yue, Y., Zheng, X., Zhang, K., Chen, S., Du, Z.. (2015). Curcumin, Inflammation, and Chronic Diseases: How Are They Linked?. Molecules, 20(5), 9183–9213.
Hoppe, J. B., Frozza, R. L., Pires, E. N., Meneghetti, A. B., Salbego, C. (2013). The curry spice curcumin attenuates beta-amyloid-induced toxicity through beta-catenin and PI3K signaling in rat organotypic hippocampal slice culture. Neurological Research, 35(8), 857–866.
Hsieh, W.T., Tung, C.F., Kuo, C.L. (2008), Know Chinese medicine easily. Taiwan: China Medical University, 279-280.
Huang, S.H. (2019), CLC NEWS. Meet turmeric. Taiwan: The Co-operative League of The Republic of China News., 107, 27-29.
Huang, X., Huang, X., Gong, Y., Xiao, H., McClements, D. J., Hu, K. (2016). Enhancement of curcumin water dispersibility and antioxidant activity using core–shell protein–polysaccharide nanoparticles. Food Research International, 87, 1–9.
Huang, Z., Li, X., Zhang, T., Song, Y., She, Z., Li, J., Deng, Y. (2014). Progress involving new techniques for liposome preparation. Asian Journal of Pharmaceutical Sciences, 9(4), 176–182.
Kato, K., Walde, P., Koine, N., Imai, Y., Akiyama, K., Sugahara, T. (2006). Molecular Composition of Nonionic Vesicles Prepared from Span 80 or Span 85 by a Two‐Step Emulsification Method. Journal of Dispersion Science and Technology, 27(8), 1217–1222.
Lal, B., Kapoor, A. K., Agrawal, P. K., Asthana, O. P., and Srimal, R. C. (2000). Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother. Res. 14, 443–447.
Leite, N. B., Martins, D. B., Fazani, V. E., Vieira, M. R., Dos Santos Cabrera, M. P. (2018). Cholesterol modulates curcumin partitioning and membrane effects. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1860, 2320–2328.
Sharma, M., Joshi, J., Chouhan, N. K., Mamta N. Talati, Sandeep Vaidya and Abhiram Kumar, (2020). Liposome-A Comprehensive Approach for Researchers. Molecular Pharmacology, Angel Catala and Usama Ahmad, IntechOpen.
Thanh Uyen, N. T., Abdul Hamid, Z. A., Thi, L. A., Ahmad, N. B. (2020) Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery, Journal of Drug Delivery Science and Technology, 58, 101796.
Nguyen, T. T. H., Si, J., Kang, C., Chung, B., Chung, D., Kim, D. (2017) Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food chemistry, 214, 366-373
Pastor-Villaescusa, B., Rodriguez, E.S., Rangel-Huerta, O.D. (2018) Obesity || Polyphenols in Obesity and Metabolic Syndrome. Academic Press, 213–239.
Patil, Y. P., Jadhav, S. (2014). Novel methods for liposome preparation. Chemistry and Physics of Lipids, 177, 8–18.
Rafiee, Z., Nejatian, M., Daeihamed, M., Jafari, S.M. (2019) Application of curcuminloaded nanocarriers for food, drug and cosmetic purposes. Trends in Food Science & Technology, 88, 445-458
Wilken, R., Veena, M. S., Wang, M. B., Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer, 10(1), 12–0.
Velayudhan, K. C., Pandravada, S. R., George, J. K., Varaprasad, K. S. (2009), Curcuma longa var. vanaharidra. J. Economic and Taxonomic Botany. Jodpur, 33(1), 172-176.
Soetikno, V., Sari, F. R., Veeraveedu, P. T., Thandavarayan, R. A., Harima, M., Sukumaran, V., Lakshmanan, A. P., Suzuki, K., Kawachi, H., Watanabe, K. (2011). Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. , 8(1), 35–0.
Vora, M.S. (2015), Rasayana: The Fountain of Life., India: PartridgeIndia.
Wagner, A., Vorauer-Uhl, K., Kreismayr, G., Katinger, H. Enhanced protein loading into liposomes by the multiple crossflow injection technique. J Liposome Res. 2002;12(3):271-83
Yang, C. Y.; Powell, C. A.; Duan, Y. P.; Zhang, M. Q. (2016). Characterization and Antibacterial Activity of Oil-In-Water Nano-Emulsion Formulation Against Candidatus Liberibacter asiaticus. Plant Disease, 100(12), 2448–2454.
Yang, S., Liu, L., Chen, H., Wei, Y., Dai, L., Liu, J., Yuan, F., Mao, L., Li, Z., Chen, F., & Gao, Y. (2021). Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles. Food Hydrocolloids, 112, 106258.
Zhao, M., (2015, April) Wrong focus? The drug problem is not at the "industrial level" or "food level" in the raw material management loophole., News&Market.
Zheng, Y. (2015). Polar Lipids,| Sugar Fatty Acid Esters, 215–243. Elsevier
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2021-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明