博碩士論文 108324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.17.181.221
姓名 李智翎(Chih-Ling Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 雙離子化薄膜過濾系統於人體血漿外泌體分離純化之研究
(The study of zwitterionic membrane filtration systems for human plasma derived exosome isolation and purification.)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 外泌體(exosome)為大小介於30~200奈米間由雙層磷脂質膜所包覆的的囊泡,其內部含有大量的生物標示(biomarkers)如蛋白質、脂質及核酸等,係由細胞吐出於體內循環作為細胞間溝通的橋樑之一,且有許多研究指出外泌體與許多疾病相關,特別是癌症的發生、轉移及擴散,且近年來液態切片(liquid biopsy)於醫學診斷上的角色日趨重要,因此外泌體的分離純化技術顯得格外重要。目前有許多外泌體分離方法超離心、高分子共沈降、免疫親和吸附及超濾法等,然而這些方法往往需要大型儀器或是以離心作為驅動力,使其不易普及,同時離心的步驟也可能導致外泌體在分離過程受到破壞進而導致低回收率,因此本研究致力於提供一以薄膜過濾為基礎的分離程序,由乏血小板血漿 (platelet poor plasma, PPP)中進行外泌體的分離純化,為了有效的提升過濾效能及外泌體回收率,設計一具兩道過濾之分離程序並搭配具有抗沾黏特性的薄膜進行外泌體純化。
第一道薄膜為由聚偏二氟乙烯(PVDF)混摻PS-r-z4vp雙離子高分子的多孔性薄膜,以移除大分子物染物;第二道程序為三醋酸纖維素(CTA)與SBMA水膠之複合膜,用以移除小分子物質並達濃縮效果。經雙離子化的薄膜依其在過濾及抗貼附的效果選出最適化條件Z1及C12-S0.5-N1作為兩道過濾膜進行血漿外泌體的分離純化,經純化分離的外泌體會以奈米粒徑追蹤分析系統(NTA)、酵素結合免疫吸附分析法(ELISA)及場發射掃描式電子顯微鏡(FE-SEM)進行定性定量分析,並與超離心法及商業化之離心超濾法進行外泌體純化之回收率、濃縮倍率及大小分子污染物比例之比較。由實驗結果可得,以雙離子化薄膜所組成的兩道過濾系統可以將外泌體濃縮1.8倍並有效提升回收率達到92%,具有比超離心及離心超濾法更好的回收效率,同時也比較雙離子化前後的薄膜於外泌體分離的差異,由實驗結果可看出以雙離子化改質提升材料抗沾黏表現有效提高外泌體的回收效能。本研究提供了一種新興的純化程序並搭配抗沾黏薄膜的使用有效提升了整體的純化效能,提供未來在外泌體分純化離應用的新選擇。
摘要(英) Exosomes are small vesicle (30-200 nm) encapsulated by a lipid bilayer which contains biomarkers such protein, DNA, and RNA inside. They play a crucial role in the detection of diseases, cancer progression and metastasis. Due to this, exosome isolation techniques have gained considerable attention, especially when liquid biopsy has played a profound role in diagnosis nowadays. Different isolation methods include ultracentrifugation, polymer precipitation, immunoaffinity capture, ultrafiltration and so on have been proposed and adapted in applications. However, most of these methods require large and expensive instruments. Moreover, centrifugation technique can potentially destroy the exosomes, generating lower recovery. In this regard, we aim to develop an easy and efficient technique by means of membrane filtration to isolate exosomes from HCT116 cell culture medium, and human platelet poor plasma (PPP). Herein, we develop a dual layer membrane filtration process endowed with antifouling property to increase the yield and purity of exosome isolation.
The first layer is a porous membrane made from a blend of polyvinylidene fluoride (PVDF) and zwitterionic polystyrene poly 4-Vinylpyridine (PS-r-zP4VP) that was used to filter out large contaminants. The obtained permeate passed through the second layer based on sulfobetaine methacrylate (SBMA) hydrogel composite cellulose triacetate (CTA) membrane which was utilized to remove smaller contaminants. The final retentate was collected to analyze exosomes. Size distribution and concentration of the retentate were evaluated using NTA, morphology was assessed by FE-SEM, and immunoaffinity of the exosomes were measured by ELISA. Furthermore, protein concentration of the isolate samples was determined through BCA assay to analyze the purity of the exosomes.
The membrane filtration system was able to provide more than 90% exosome recovery with increase exosome concentration by 1.8-fold by comparing with input PPP. In contrast, conventional method using centrifugal ultrafiltration and ultracentrifugation only yielded 60% recovery, 1.2-fold concentrate and 30% recovery, 0.8-fold concentrate. Hence, these results indicate that dual membrane filtration method can provide a promising approach to isolate exosomes in a more economical and efficient manner.
關鍵字(中) ★ 外泌體
★ 薄膜過濾
★ 抗沾黏材料
★ 雙離子高分子
★ 人體血漿
★ 細胞外囊泡
關鍵字(英) ★ exosome
★ membrane filtration
★ antifouling material
★ zwitterionic polymer
★ human plasma
★ extracellular vesicles
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 XII
表目錄 XVII
一、 緒論 1
二、 文獻回顧 3
2.1 疾病檢測 3
2.1.1 疾病檢體 3
2.1.2 疾病生物標示 4
2.2 細胞外囊泡 6
2.2.1 何謂細胞外囊泡 6
2.2.2 外泌體 7
2.2.3 外泌體作為疾病生物標示 9
2.2.4 外泌體其他應用 11
2.3 外泌體分離純化方法 12
2.3.1 超高速離心法 12
2.3.2 高分子共沈降 13
2.3.3 免疫親和吸附 14
2.3.4 管柱層析 15
2.3.5 薄膜過濾法 16
2.3.6 微流道 18
2.4 外泌體檢測方法 19
2.4.1 尺寸分佈 19
2.4.2 免疫專一特徵 20
2.4.3 表面型態 22
2.4.4 外泌體濃度 23
2.5 薄膜科技 24
2.5.1 薄膜分離程序 24
2.5.2 高分子薄膜材料與成膜機制 26
2.6 材料表面抗污 29
2.6.1 材料污損 29
2.6.2 生物相容抗污材料 29
2.7 材料改質 32
2.7.1 物理改質 32
2.7.2 化學改質 32
2.8 研究動機 34
三、 實驗藥品、儀器及方法 35
3.1 實驗藥品 35
3.1.1 薄膜材料及表面改質 35
3.1.2 細胞培養 36
3.1.3 Exosome純化系統 36
3.1.4 SEM 36
3.1.5 外泌體定性定量分析 37
3.1.6 材料物化性鑑定 37
3.1.7 材料防污鑑定 38
3.2 實驗儀器 39
3.3 實驗方法 41
3.3.1 薄膜成膜 41
3.3.2 薄膜表面改質 41
3.3.3 薄膜材料化學鑑定 42
3.3.4 薄膜材料物理鑑定 43
3.3.4.1 過濾效能與分子截流大小 43
3.3.4.2 薄膜結構與表面形貌 44
3.3.4.3 薄膜表面改質密度 44
3.3.4.4 薄膜水合能力 44
3.3.4.5 薄膜表面親疏水性 45
3.3.5 薄膜材料防污鑑定 46
3.3.5.1 蛋白質貼附 46
3.3.5.2 全血貼附 47
3.3.5.3 蛋白質過濾 47
3.3.6 過濾樣品製備 48
3.3.6.1 細胞培養液 48
3.3.6.2 乏血小板血漿 48
3.3.7 以薄膜過濾系統純化外泌體 49
3.3.8 以超濾及超離心法進行外泌體純化 52
3.3.8.1 超離心法 52
3.3.8.2 超濾法 52
3.3.9 外泌體定性定量分析 54
3.3.9.1 外泌體粒徑大小及濃度分析 54
3.3.9.2 外泌體表面形態鑑定 54
3.3.9.3 外泌體免疫特徵鑑定 55
3.3.9.4 溶液內蛋白含量檢測 55
四、 結果與討論 56
4.1 薄膜材料鑑定 56
4.1.1 膜材表面化學分析 56
4.1.2 薄膜型態 58
4.1.3 薄膜表面改質密度 61
4.1.4 材料表面親疏水性及水和能力 62
4.1.5 分子截流大小及過濾成效 64
4.2 薄膜材料表面防污及過濾效能 67
4.2.1 血漿纖維蛋白原貼附情形 67
4.2.2 全血血球細胞貼附情形 69
4.2.3 胎牛血清白蛋白過濾成效分析 71
4.3 細胞培養液外泌體純化 73
4.3.1 外泌體粒徑大小分佈 73
4.3.2 外泌體表面形態 75
4.3.3 外泌體免疫特徵 76
4.4 血漿外泌體純化 79
4.4.1 外泌體粒徑大小分佈、濃度及回收率 79
4.4.2 溶液蛋白質濃度分析 84
4.4.3 外泌體表面形態 86
4.4.4 外泌體免疫特徵 88
4.4.5 抗沾黏層對於外泌體純化效能之影響 90
4.5 不同純化方式之外泌體純化效率比較 95
4.5.1 外泌體粒徑大小分佈 95
4.5.2 外泌體濃度、濃縮倍率與回收率 97
4.5.3 蛋白質濃度與外泌體-蛋白質含量比 100
五、 結論 104
六、 未來展望 105
七、 參考文獻 106
參考文獻 [1] D. Connors et al., "International liquid biopsy standardization alliance white paper," Crit Rev Oncol Hematol, vol. 156, p. 103112, Dec 2020.
[2] A. Jung and T. Kirchner, "Liquid Biopsy in Tumor Genetic Diagnosis," Dtsch Arztebl Int, vol. 115, no. 10, pp. 169-174, Mar 9 2018.
[3] D. Grölz et al., "Liquid Biopsy Preservation Solutions for Standardized Pre-Analytical Workflows—Venous Whole Blood and Plasma," Current Pathobiology Reports, Review vol. 6, no. 4, pp. 275-286, 2018.
[4] S. Salvi et al., "The potential use of urine cell free DNA as a marker for cancer," (in English), Expert Rev Mol Diagn, vol. 16, no. 12, pp. 1283-1290, Dec 2016.
[5] S. Jain, S. Y. Lin, W. Song, and Y. H. Su, "Urine-Based Liquid Biopsy for Nonurological Cancers," (in English), Genet Test Mol Bioma, vol. 23, no. 4, pp. 277-283, Apr 1 2019.
[6] J. Cheng, T. Nonaka, and D. T. W. Wong, "Salivary Exosomes as Nanocarriers for Cancer Biomarker Delivery," (in English), Materials, vol. 12, no. 4, Feb 2 2019.
[7] K. Aro, F. Wei, D. T. Wong, and M. Tu, "Saliva Liquid Biopsy for Point-of-Care Applications," (in English), Front Public Health, vol. 5, Apr 11 2017.
[8] S. Halvaei et al., "Exosomes in Cancer Liquid Biopsy: A Focus on Breast Cancer," Mol Ther Nucleic Acids, vol. 10, pp. 131-141, Mar 2 2018.
[9] O. A. Sindeeva et al., "New Frontiers in Diagnosis and Therapy of Circulating Tumor Markers in Cerebrospinal Fluid In Vitro and In Vivo," (in English), Cells-Basel, vol. 8, no. 10, Oct 2019.
[10] A. Cheruvanky et al., "Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator," (in English), Am J Physiol-Renal, vol. 292, no. 5, pp. F1657-F1661, May 2007.
[11] C. Rolfo and A. Russo, "Liquid biopsy for early stage lung cancer moves ever closer," (in English), Nat Rev Clin Oncol, vol. 17, no. 9, pp. 523-524, Sep 2020.
[12] A. D. Sutherland, R. B. Gearry, and F. A. Frizelle, "Review of fecal biomarkers in inflammatory bowel disease," (in English), Dis Colon Rectum, vol. 51, no. 8, pp. 1283-1291, Aug 2008.
[13] J. Brooks, A. Watson, and T. Korcsmaros, "Omics Approaches to Identify Potential Biomarkers of Inflammatory Diseases in the Focal Adhesion Complex," (in English), Genom Proteom Bioinf, vol. 15, no. 2, pp. 101-109, Apr 2017.
[14] S. S. Hecht, S. E. Murphy, I. Stepanov, H. H. Nelson, and J. M. Yuan, "Tobacco smoke biomarkers and cancer risk among male smokers in the Shanghai Cohort Study," (in English), Cancer Lett, vol. 334, no. 1, pp. 34-38, Jun 28 2013.
[15] K. W. E. Cheung et al., "The potential of circulating cell free RNA as a biomarker in cancer," (in English), Expert Rev Mol Diagn, vol. 19, no. 7, pp. 579-590, Jul 3 2019.
[16] A. Srivastava and D. J. Creek, "Discovery and Validation of Clinical Biomarkers of Cancer: A Review Combining Metabolomics and Proteomics," (in English), Proteomics, vol. 19, no. 10, May 2019.
[17] D. C. Perez-Ibave, C. H. Burciaga-Flores, and M. A. Elizondo-Riojas, "Prostate-specific antigen (PSA) as a possible biomarker in non-prostatic cancer: A review," (in English), Cancer Epidemiol, vol. 54, pp. 48-55, Jun 2018.
[18] X. Filella and L. Foj, "Prostate Cancer Detection and Prognosis: From Prostate Specific Antigen (PSA) to Exosomal Biomarkers," (in English), Int J Mol Sci, vol. 17, no. 11, Nov 2016.
[19] T. Rodrigues et al., "On the detection of cTnI - a comparison of surface-plasmon optical-electrochemical-, and electronic sensing concepts," (in English), Annals of Clinical and Medical Case Reports, vol. 6, no. 2, pp. 1-16, 2021-03-06 2021.
[20] H. Schwarzenbach, D. S. B. Hoon, and K. Pantel, "Cell-free nucleic acids as biomarkers in cancer patients," (in English), Nat Rev Cancer, vol. 11, no. 6, pp. 426-437, Jun 2011.
[21] S. Gilad et al., "Serum MicroRNAs Are Promising Novel Biomarkers," (in English), Plos One, vol. 3, no. 9, Sep 5 2008.
[22] L. Cheng, R. A. Sharples, B. J. Scicluna, and A. F. Hill, "Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood," J Extracell Vesicles, Article vol. 3, no. 1, 2014, Art no. 23743.
[23] C. C. Chen, B. R. Lin, H. K. Wang, S. T. Fan, M. Y. Hsu, and C. M. Cheng, "Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles," (in English), Microfluid Nanofluid, vol. 16, no. 5, pp. 849-856, May 2014.
[24] P. Zhang, J. C. Yeo, and C. T. Lim, "Advances in Technologies for Purification and Enrichment of Extracellular Vesicles," (in English), Slas Technol, vol. 24, no. 5, pp. 477-488, Oct 2019.
[25] B. T. Zhou et al., "Application of exosomes as liquid biopsy in clinical diagnosis," (in English), Signal Transduct Tar, vol. 5, no. 1, Aug 3 2020. [Online]. Available: <Go to ISI>://WOS:000560393500003.
[26] M. Mathew, M. Zade, N. Mezghani, R. Patel, Y. Wang, and F. Momen-Heravi, "Extracellular Vesicles as Biomarkers in Cancer Immunotherapy," (in English), Cancers, vol. 12, no. 10, Oct 2020.
[27] C. H. Wong and Y. C. Chen, "Clinical significance of exosomes as potential biomarkers in cancer," (in English), World J Clin Cases, vol. 7, no. 2, pp. 171-190, Jan 26 2019.
[28] D. Sanz-Rubio et al., "Stability of Circulating Exosomal miRNAs in Healthy Subjects," (in English), Sci Rep-Uk, vol. 8, Jul 9 2018.
[29] H. Peng et al., "Exosome: a significant nano-scale drug delivery carrier," (in English), J Mater Chem B, vol. 8, no. 34, pp. 7591-7608, Sep 14 2020.
[30] A. Yekula et al., "Large and small extracellular vesicles released by glioma cells in vitro and in vivo," (in English), J Extracell Vesicles, vol. 9, no. 1, Jan 1 2020.
[31] M. Li, E. Zeringer, T. Barta, J. Schageman, A. G. Cheng, and A. V. Vlassov, "Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers," (in English), Philos T R Soc B, vol. 369, no. 1652, Sep 26 2014.
[32] R. E. Lane, D. Korbie, M. M. Hill, and M. Trau, "Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges," (in English), Clin Transl Med, vol. 7, May 31 2018.
[33] C. Thery, M. Ostrowski, and E. Segura, "Membrane vesicles as conveyors of immune responses," (in English), Nat Rev Immunol, vol. 9, no. 8, pp. 581-593, Aug 2009.
[34] R. Xu, A. Rai, M. S. Chen, W. Suwakulsiri, D. W. Greening, and R. J. Simpson, "Extracellular vesicles in cancer - implications for future improvements in cancer care," (in English), Nat Rev Clin Oncol, vol. 15, no. 10, pp. 617-638, Oct 2018.
[35] H. H. Jung, J. Y. Kim, J. E. Lim, and Y. H. Im, "Cytokine profiling in serum-derived exosomes isolated by different methods," (in English), Sci Rep-Uk, vol. 10, no. 1, Aug 21 2020.
[36] F. Cocozza, E. Grisard, L. Martin-Jaular, M. Mathieu, and C. Thery, "SnapShot: Extracellular Vesicles," (in English), Cell, vol. 182, no. 1, pp. 262-+, Jul 9 2020.
[37] A. Hoshino et al., "Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers," (in English), Cell, vol. 182, no. 4, pp. 1044-+, Aug 20 2020.
[38] L. G. Liang et al., "An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer," (in English), Sci Rep-Uk, vol. 7, Apr 24 2017.
[39] B. Malla, D. M. Aebersold, and A. Dal Pra, "Protocol for serum exosomal miRNAs analysis in prostate cancer patients treated with radiotherapy," (in English), J Transl Med, vol. 16, Aug 13 2018.
[40] S. R. Kumar, E. T. Kimchi, Y. Manjunath, S. Gajagowni, A. J. Stuckel, and J. T. Kaifi, "RNA cargos in extracellular vesicles derived from blood serum in pancreas associated conditions (vol 10, 2800, 2020)," (in English), Sci Rep-Uk, vol. 10, no. 1, Jun 18 2020.
[41] S. Chettimada, D. R. Lorenz, V. Misra, S. M. Wolinsky, and D. Gabuzda, "Small RNA sequencing of extracellular vesicles identifies circulating miRNAs related to inflammation and oxidative stress in HIV patients," (in English), Bmc Immunol, vol. 21, no. 1, Nov 11 2020.
[42] D. D. Perez et al., "Extracellular vesicle-miRNAs as liquid biopsy biomarkers for disease identification and prognosis in metastatic colorectal cancer patients," (in English), Sci Rep-Uk, vol. 10, no. 1, Mar 4 2020.
[43] F. Dias et al., "Plasma Extracellular Vesicle-Derived TIMP-1 mRNA as a Prognostic Biomarker in Clear Cell Renal Cell Carcinoma: A Pilot Study," (in English), Int J Mol Sci, vol. 21, no. 13, Jul 2020.
[44] M. Shi et al., "Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease," Acta Neuropathologica, Article vol. 128, no. 5, pp. 639-650, 2014.
[45] H. Guan, R. Peng, L. K. Mao, F. Fang, B. Xu, and M. Chen, "Injured tubular epithelial cells activate fibroblasts to promote kidney fibrosis through miR-150-containing exosomes," (in English), Exp Cell Res, vol. 392, no. 2, Jul 15 2020.
[46] P. Li, M. Kaslan, S. H. Lee, J. Yao, and Z. Q. Gao, "Progress in Exosome Isolation Techniques," (in English), Theranostics, vol. 7, no. 3, pp. 789-804, 2017.
[47] T. Liangsupree, E. Multia, and M. L. Riekkola, "Modern isolation and separation techniques for extracellular vesicles," (in English), J Chromatogr A, vol. 1636, Jan 11 2021.
[48] L. Dong et al., "Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium," (in English), J Extracell Vesicles, vol. 10, no. 2, Dec 2020.
[49] S. L. Shu et al., "Purity and yield of melanoma exosomes are dependent on isolation method," (in English), J Extracell Vesicles, vol. 9, no. 1, Jan 1 2020.
[50] F. Momen-Heravi, B. Saha, K. Kodys, D. Catalano, A. Satishchandran, and G. Szabo, "Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis," (in English), J Transl Med, vol. 13, Aug 12 2015.
[51] S. I. Brett et al., "Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples," Prostate, vol. 77, no. 13, pp. 1335-1343, May 2017.
[52] G. Vergauwen et al., "Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research," (in English), Sci Rep-Uk, vol. 7, Jun 2 2017.
[53] R. P. McNamara et al., "Large-scale, cross-flow based isolation of highly pure and endocytosis-competent extracellular vesicles," (in English), J Extracell Vesicles, vol. 7, no. 1, Nov 30 2018.
[54] F. Liu et al., "The Exosome Total Isolation Chip," (in English), Acs Nano, vol. 11, no. 11, pp. 10712-10723, Nov 2017.
[55] U. D. Fei Liu, Sanjiv Sam Gambhir, Viswam S. NAIR, "Exosome-Total-Isolation-Chip (ExoTIC) Device for Isolation of Exosome-Based Biomarkers," Feb . 14 , 2019.
[56] Z. Y. Chen, Y. Yang, H. Yamaguchi, M. C. Hung, and J. Kameoka, "Isolation of cancer-derived extracellular vesicle subpopulations by a size-selective microfluidic platform," (in English), Biomicrofluidics, vol. 14, no. 3, May 2020.
[57] V. Sunkara et al., "Fully Automated, Label-Free Isolation of Extracellular Vesicles from Whole Blood for Cancer Diagnosis and Monitoring," (in English), Theranostics, vol. 9, no. 7, pp. 1851-1863, 2019.
[58] H. K. Woo et al., "Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples," ACS Nano, vol. 11, no. 2, pp. 1360-1370, Feb 28 2017.
[59] E. Serrano-Pertierra et al., "Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification," Biomolecules, vol. 10, no. 6, May 28 2020.
[60] A. Tieu et al., "An Analysis of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Preclinical Use," ACS Nano, vol. 14, no. 8, pp. 9728-9743, Aug 25 2020.
[61] M. L. Heinemann et al., "Benchtop isolation and characterization of functional exosomes by sequential filtration," J Chromatogr A, vol. 1371, pp. 125-35, Dec 5 2014.
[62] R. Xu, D. W. Greening, A. Rai, H. Ji, and R. J. Simpson, "Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct," Methods, vol. 87, pp. 11-25, Oct 1 2015.
[63] M. Logozzi, R. Di Raimo, D. Mizzoni, and S. Fais, "Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids," (in eng), Methods Enzymol, vol. 645, pp. 155-180, 2020.
[64] D. Enderle et al., "Characterization of RNA from Exosomes and Other Extracellular Vesicles Isolated by a Novel Spin Column-Based Method," Plos One, vol. 10, no. 8, p. e0136133, 2015.
[65] R. Suthanthararajan, E. Ravindranath, K. Chits, B. Umamaheswari, T. Ramesh, and S. Rajamam, "Membrane application for recovery and reuse of water from treated tannery wastewater," Desalination, vol. 164, no. 2, pp. 151-156, 2004/04/01/ 2004.
[66] T. Sunohara and T. Masuda, "Cellulose triacetate as a high-performance membrane," (in eng), Contrib Nephrol, vol. 173, pp. 156-163, 2011.
[67] H. Sato and T. Kidaka, "Characteristics of the cellulose triacetate membrane for hemofiltration," Int J Artif Organs, vol. 6, no. 6, pp. 289-94, Nov 1983.
[68] L. Kaštelan-Kunst, D. Sambrailo, and B. Kunst, "On the skinned cellulose triacetate membranes formation," Desalination, vol. 83, no. 1, pp. 331-342, 1991/09/01/ 1991.
[69] P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, and J. Feijen, "Phase separation processes in polymer solutions in relation to membrane formation," Journal of Membrane Science, vol. 117, no. 1, pp. 1-31, 1996/08/21/ 1996.
[70] D. Li, W. B. Krantz, A. R. Greenberg, and R. L. Sani, "Membrane formation via thermally induced phase separation (TIPS): Model development and validation," Journal of Membrane Science, vol. 279, no. 1, pp. 50-60, 2006/08/01/ 2006.
[71] D.-M. Wang and J.-Y. Lai, "Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation," Current Opinion in Chemical Engineering, vol. 2, no. 2, pp. 229-237, 2013/05/01/ 2013.
[72] E. Almeida, T. C. Diamantino, and O. de Sousa, "Marine paints: The particular case of antifouling paints," Progress in Organic Coatings, vol. 59, no. 1, pp. 2-20, 2007/04/02/ 2007.
[73] C. Yang, G. L. Liang, K. M. Xu, P. Gao, and B. Xu, "Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO2@Ag nanoconjugates," Journal of Materials Science, vol. 44, no. 7, pp. 1894-1901, 2009/04/01 200.
[74] Y. C. Chiang, Y. Chang, A. Higuchi, W. Y. Chen, and R. C. Ruaan, "Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property," (in English), Journal of Membrane Science, Article vol. 339, no. 1-2, pp. 151-159, Sep 2009.
[75] C. C. Lien et al., "A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion," Journal of Membrane Science, Article vol. 584, pp. 148-160, 2019.
[76] A. Jain and N. B. Bhosle, "Biochemical composition of the marine conditioning film: implications for bacterial adhesion," Biofouling, vol. 25, no. 1, pp. 13-9, 2009.
[77] M.-C. Sin, S.-H. Chen, and Y. Chang, "Hemocompatibility of zwitterionic interfaces and membranes," Polymer Journal, vol. 46, no. 8, pp. 436-443, 2014/08/01 2014.
[78] Y. Chang, S.-C. Liao, A. Higuchi, R.-C. Ruaan, C.-W. Chu, and W.-Y. Chen, "A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion," Langmuir, vol. 24, no. 10, pp. 5453-5458, 2008/05/01 2008.
[79] B. Yu et al., "Factors to be Considered in Bulk Heterojunction Polymer Solar Cells Fabricated by the Spray Process," IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 6, pp. 1838-1846, 2010.
[80] W. Brostow, R. Chiu, I. M. Kalogeras, and A. Vassilikou-Dova, "Prediction of glass transition temperatures: Binary blends and copolymers," Materials Letters, vol. 62, no. 17, pp. 3152-3155, 2008/06/30/ 2008.
[81] A. J. Sanchez-Herencia, "Water Based Colloidal Processing of Ceramic Laminates," Key Engineering Materials, vol. 333, pp. 39-48, 2007.
[82] Y. N. Chou, T. C. Wen, and Y. Chang, "Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces," (in English), Acta Biomater, vol. 40, pp. 78-91, Aug 2016.
[83] C. J. Huang, N. D. Brault, Y. T. Li, Q. M. Yu, and S. Y. Jiang, "Controlled Hierarchical Architecture in Surface-initiated Zwitterionic Polymer Brushes with Structurally Regulated Functionalities," (in English), Adv Mater, vol. 24, no. 14, pp. 1834-1837, Apr 10 2012.
[84] S. H. Tang et al., "Bioinert Control of Zwitterionic Poly(ethylene terephtalate) Fibrous Membranes," (in English), Langmuir, vol. 35, no. 5, pp. 1727-1739, Feb 5 2019.
[85] I. V. Maggay et al., "Thermostable antifouling zwitterionic vapor-induced phase separation membranes," (in English), Journal of Membrane Science, vol. 627, Jun 1 2021.
[86] E. Drioli, C. A. Quist-Jensen, and L. Giorno, "Molecular Weight Cutoff," in Encyclopedia of Membranes, E. Drioli and L. Giorno Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 1326-1327.
[87] C. D. Gomez, R. V. Goreham, J. J. B. Serra, T. Nann, and M. Kussmann, ""Exosomics"-A Review of Biophysics, Biology and Biochemistry of Exosomes With a Focus on Human Breast Milk," (in English), Frontiers in Genetics, vol. 9, Mar 27 2018.
指導教授 陳文逸 張雍(Wen-Yih Chen Yung Chang) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明