博碩士論文 108223057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.117.119.70
姓名 施瀚昇(Han-Sheng Shih)  查詢紙本館藏   畢業系所 化學學系
論文名稱 快離子導體類複合固態電解質於半固態鋰離子電池之研究
(NaSICON-type LAGP in composite solid electrolyte for solid-state lithium ion battery)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於液體電解質無法提供與日俱增能量密度以及安全性,次世代的電池便寄望使用固態電解質來取代液態電解質。然而每種類型的固態電解質都有其優缺點,其中就以擁有極高室溫導電度以及空氣穩定性的快離子導體類(NaSICON)的磷酸鍺鋁鋰(Lithium aluminum germanium phosphate,
LAGP)無機物和擁有能直接成模且有高化學穩定性的高分子類的Poly(vinyl-idenefluoride-co-hexafluoropropylene) (PVDF-HFP)特別引人注目。然而
LAGP介面接合不佳以及需高溫使其緻密的缺點和PVDF-HFP無法有效抑制鋰枝晶的問題,限制了它們的發展。遂本篇研究利用簡單的溶劑鑄模法(Solvent-Casting)製作出複合高分子類的PVDF-HFP和氧化物類的LAGP以及鋰鹽的複合固態電解質,並於電極與電解質介面添加微量的液體電解質。發現若單以溶劑澆鑄法成膜會導致LAGP分布不均,但可以反過來利用此特性來避免LAGP與鋰負極發生反應。而以此複合固態電解質與磷酸鋰鐵和鋰箔所組成之半固態電池,能夠在0.3C下穩定充放電100圈還保有99%以上的電容保持率,且發現於0.1C下10wt% LAGP會有最佳的平均電容表現約為140 mAh/g;然而在3C下卻是15wt% LAGP有最佳的平均電容約為85 mAh/g,反應出高低充放電速率其傳遞機制不盡相同,高速率下LAGP會逐漸主導傳遞機制。此外,根據交流阻抗的結果,採用正極介面修飾來改善LAGP與正極相容性不佳所導致的高介面電阻的問題。添加15% LAGP的半電池在經修飾後Rct值從319下降到184,並可使半電池在0.5C下的庫倫效率更進一步提升,說明此介面修飾法在愈高比例的LAGP下會有愈顯著的效果。
摘要(英) Using solid state electrolyte to improve the safety and the energy density is a promising answer for the next-generation energy storage devices. Among various solid state lithium ion conductors, NaSICON-type ceramic- Lithium aluminum Germanium phosphate(LAGP) catch a lot of attention due to its advantages of high lithium ion conductivity in room temperature and high air stability, but it needs high pressure or temperature to densification to solve the disadvantages which is bad for commercial application. Therefore, we introduce an easy solvent-casting way to synthesis the composite solid state electrolyte. We embedding the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) ceramic particles into the PVDF-HFP matrix. The ionic conductivity of composite solid membrane is around 2 x 10-6 S/cm when the amount of LAGP is 15 wt% almost five times higher than polymer electrolyte. Moreover, the Li|CSE|LiFePO4 cell exhibits long term life time its capacity retention rate is over 99% even run more than 100 cycle in 0.3C. However, higher capacity of 140 mAh/g in 0.1C for 10wt% LAGP, but higher 85 mAh/g in 3C for 15wt% LAGP suggest that the mechanism of ionic transportation is not the same between different current rate. Furthermore, with the interfacial modified, the interfacial resistance of half cell for 15wt% LAGP decreases from 355 to 193 almost half of its original one and the half cell coulombic efficiency is also
improving.
關鍵字(中) ★ 快離子導體
★ 固態鋰電池
★ 複合材料
關鍵字(英) ★ NaSICON
★ Solid-state lithium battery
★ Composite solid electrolyte
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 鋰離子電池工作原理 3
2-2 鋰電池電解質分析 5
2-2-1 液態電解質 5
2-2-2 高分子類固態電解質 6
2-2-3 氧化物類固態電解質 11
2-2-4 硫化物類固態電解質 18
2-3 複合固態電解質 22
2-3-1 高分子複合氧化物 22
2-3-2 高分子複合硫化物 25
2-3-3 氧化物複合硫化物 27
2-3-4 固態複合液態 (膠態電解質) 28
2-3-5 添加物效應 31
2-4 複合電解質製程 36
2-4-1 溶劑澆鑄法 37
2-4-2 機械應力法 37
2-4-3 浸漬法 38
2-4-4 3D列印法 38
第三章 實驗流程 39
3-1 實驗藥品 39
3-2 實驗器材及儀器 41
3-3 實驗步驟 42
3-3-1 複合固態電解質之製備 42
3-3-2 正極極片之製備及修飾 43
3-3-3 半電池之製備 44
3-3-4 儀器鑑定方法 45
第四章 實驗結果與討論 46
4-1 LAGP品質鑑定 47
4-2 複合固態電解質分析 48
4-3 複合固態電解質之熱穩定性及導電度分析 52
4-4 半固態電池之電性分析 55
4-5 介面電阻分析 60
4-6 半電池極化分析 62
4-7 不均勻複合電解質效果分析 64
4-8 介面修飾分析 67
4-9 製程分析 70
第五章 結論與未來展望 72
5-1 結論 72
5-2 未來展望 72
參考文獻 74
參考文獻 [1] Züttel, A. Remhof, A. Borgschulte and O. Friedrichs, “Hydrogen: the
future energy carrier”, Phil. Trans. R. Soc. A, 2010, 368, Pages 3329–3342
[2] W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao and D. Cui, “Nanostructured
anode materials for lithium-ion batteries: principle, recent progress and future perspectives”, J. Mater. Chem. A, 2017, 5, Pages 19521–19540
[3] S. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier, M. Armand, P. Johansson and S. Laruelle “Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds”, Journal of Power Sources, 2019, Volume 427, Pages 77-84
[4] J. Liang, J. Luo, Q. Sun, X. Yang, R. Li and X. Sun, “Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries”, Energy Storage Materials, 2019, Volume 21, Pages 308-334
[5] D.E.Fenton, J.M.Parker and P.V.Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 1973, Volume 14, Issue 11, Page 589
[6] S. B. Aziz, T. J. Woo, M.F.Z. Kadir and H. M. Ahmed, “A conceptual review on polymer electrolytes and ion transport models”, Journal of Science: Advanced Materials and Devices, 2018, Volume 3, Issue 1, Pages 1-17
[7] H. Yuan, J. Luan, Z. Yang, J. Zhang, Y. Wu, Z. Lu and H. Liu, “Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries”, ACS Appl. Mater. Interfaces, 2020, Pages 7249−7256
[8] K. S. Ngai , S. Ramesh , K. Ramesh and J. C. Juan, ”A review of polymer electrolytes: fundamental, approaches and applications”, Ionic, 2016, Volume 22, Pages 1259-1279
[9] K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell and N. P. Balsara, “Detection of subsurface structures underneath dendrites formed on cycled lithiummetal electrodes”, Nature Materials, 2014, Volume 13, Pages 69–73
[10] N. J. Shah, S. Dadashi-Silab, M. D. Galluzzo, S. Chakraborty, W. S. Loo,
K. Matyjaszewski and N. P. Balsara, “Effect of Added Salt on Disordered
Poly(ethylene oxide)-Block-Poly(methyl- methacrylate) Copolymer
Electrolytes”, Macromolecules, 2021, 54, Pages 1414−1424
[11] H. Miyashiro, Y. Kobayashi, S. Seki, Y. Mita, A. Usami, M. Nakayama
and M. Wakihara “Fabrication of All-Solid-State Lithium Polymer
Secondary Batteries Using Al2O3-Coated LiCoO2”, Chem. Mater., 2005,
Volume 17, No. 23
[12] K. M. Abraham and M. Alamgir, ”Li+-Conductive Solid Polymer
Electrolytes with Liquid-Like Conductivity”, J. Electrochem. Soc., 1990,
Volume 137, No. 5
[13] P. Raghavan, J. Manuel, X. Zhao, D. S. Kim, J. y. Ahn and C. Nah,
“Preparation and electrochemical characterization of gel polymer
electrolyte based on electrospun polyacrylonitrile nonwoven membranes
for lithium batteries”, Journal of Power Sources, 2011, Volume 196, Issue
16, Pages 6742-6749
[14] J. Vondra´k, M. Sedlarˇı´kova´, J. Velicka´, B. Kla´psˇteˇ, V. Nova´k and
J. Reiter, “Gel polymer electrolytes based on PMMA”, Electrochimica
Acta, 2001, Volume 46, Issues 13–14, Pages 2047-2048
[15] Y. Liu, P. He and H. Zhou, “Rechargeable Solid-State Li–Air and Li–S
Batteries: Materials, Construction, and Challenges”, Adv. Energy Mater.,
2017, 1701602
[16] R. DeWees and H. Wang, “Synthesis and Properties of NASICON-type
LATP and LAGP Solid Electrolytes”, ChemSusChem, 2019, Volume 12,
Issue16, Pages 3713-3725
[17] B. Kumar, D. Thomas and J. Kumarz, “Space-Charge-Mediated
Superionic Transport in Lithium Ion Conducting Glass–Ceramics”,
Journal of The Electrochemical Society, 2009, Volume 156, No. 7, Pages
506-513
[18] D. Safanama and S. Adams, “High efficiency aqueous and hybrid lithium-
air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting
membranes”, Journal of Power Sources, 2017, Volume 340, Pages 294-301
[19] X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu and J. Luo Long, “Cycling
Life Solid-State Li Metal Batteries with Stress Self-Adapted Li/Garnet
Interface”, Nano Lett., 2020, Volume 20, Pages 2871−2878
[20] Y.Zhu, X.He and Y.Mo, “Origin of Outstanding Stability in the Lithium
Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based
on First-Principles Calculations”, ACS Appl. Mater. Interfaces, 2015,
Volume 7, Pages 23685−23693
[21] L. He, Q. Sun, C. Chen, J. A. S. Oh, J. Sun, M. Li, W. Tu, H. Zhou, K.
Zeng and L. Lu, “Failure Mechanism and Interface Engineering for
NASICON-Structured All-Solid-State Lithium Metal Batteries”, ACS
Appl. Mater. Interfaces, 2019, Volume 11, Pages 20895−20904
[22] Y. Liu, Q. Sun, Y. Zhao, B. Wang, “Stabilizing the Interface of NASICON
Solid Electrolyte against Li Metal with Atomic Layer Deposition”, ACS
Appl. Mater. Interfaces, 2018, Volume 10, Pages 31240−31248
[23] M. P. O’Callaghan, D. R. Lynham, E. J. Cussen and G. Z. Chen ,
“Structure and Ionic-Transport Properties of Lithium-Containing Garnets
Li3Ln3Te2O12”, Chem. Mater., 2006, Volume 18, Pages 4681-4689
[24] V. Thangadurai, H. Kaack, and W. J. F. Weppner, ”Novel Fast Lithium Ion
Conduction in Garnet-Type Li5La3M2O12”, J. Am. Ceram. Soc., 2003,
Volume 86, Issue 3, Pages 437–440
[25] V. Thangadurai and W. Weppner, “Li6ALa2Nb2O12: A New Class of Fast
Lithium Ion Conductors with Garnet-Like Structure”, J. Am. Ceram.Soc.,
2005, Volume 88, Issue 2, Pages 411-418
[26] R. Murugan, V. Thangadurai and W. Weppner, “Fast Lithium Ion
Conduction in Garnet-Type Li7La3Zr2O12”, Angew. Chem. Int., 2007,
Volume 46, Pages 7778 –7781
[27] F. Han, Y. Zhu , X. He , Y. Mo and C. Wang, “Electrochemical Stability
of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes”, Adv. Energy Mater.,
2016, Volume 6, Issue 8, 1501590
[28] L. Truong and V. Thangadurai, “Soft-Chemistry of Garnet-Type
Li5+xBaxLa3-xNb2O12 (x = 0, 0.5, 1):Reversible H+ To Li+ Ion-Exchange
Reaction and Their X-ray, 7Li MAS NMR, IR, and AC Impedance
Spectroscopy Characterization”, Chem. Mater., 2011, Volume 23, Pages
3970–3977
[29] H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin, Z. Li and J. B. Goodenough,
“Li3N‑Modified Garnet Electrolyte for All-Solid-State Lithium Metal
Batteries Operated at 40 °C”, Nano Lett., 2018, Volume 18, Pages
7414−7418
[30] Z. Zhang, A. R. Gonzalez, and K. L. Choy, “Boron Nitride Enhanced
Garnet-Type (Li6.25Al0.25La3Zr2O12) Ceramic Electrolyte for an All-Solid-
State Lithium-Ion Battery”, ACS Appl. Energy Mater., 2019, Volume 2,
Pages 7438−7448
[31] Y. Inaguma, C. Liquan, M. Itoh and T. Nakamura, “High Ionic
Conductivity In Lithium Lanthanum Titanate”, Solid State
Communications, 1993, Volume 86, No. 10, Pages 689-693
[32] K. Liu, R. Zhang, J. Sun, M. Wu, and T. Zhao, “Polyoxyethylene-
(PEO)|PEO−Perovskite|PEO Composite Electrolyte for All-Solid-State
Lithium Metal Batteries”, ACS Appl. Mater. Interfaces, 2019, Volume 11,
Pages 46930−46937
[33] L.C. Kin, Z. Liu, O. Astakhov, S. N. Agbo, H. Tempel, S. Yu, H. Kungl,
R. A. Eichel, U. Rau, T. Kirchartz and T. Merdzhanova, “Efficient Area
Matched Converter Aided Solar Charging of Lithium Ion Batteries Using
High Voltage Perovskite Solar Cells”, ACS Appl. Energy Mater., 2020,
Volume 3, Pages 431−439
[34] M. Y. Wang, S. H. Han, C.Q. Niu, Z. S. Chao, W. B. Luo, H. G. Jin, W. J.
Yi, Z. Q. Fan and J. C. Fan, “Perovskite Lithium Lanthanum Titanate-
Modified Separator as Both Adsorbent and Converter of Soluble
Polysulfides toward High-Performance Li‑S Battery”, ACS Sustainable
Chem. Eng., 2020, Volume 8, Pages 16477−16492
[35] X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H.
Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman and L. Hu,
“Negating interfacial impedance in garnet-based solid-state Li metal
batteries”, Nature Materials, 2017, Volume 16, Pages 572–579
[36] S. Wenzel, S. Randau, T. Leichtweiß, D. A. Weber, J. Sann, W. G. Zeier
and J. Janek, “Direct observation of the interfacial instability of the fast
ionic conductor Li10GeP2S12 at the lithium metal anode”, Chem.
Mater., 2016, Volume 28, Issue 7, Pages 2400–2407
[37] A. Sakuda, A. Hayashi and M. Tatsumisago, “Interfacial Observation
between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-
State Lithium Secondary Batteries Using Transmission Electron
Microscopy”, Chem. Mater., 2010, Volume 22, Pages 949–956
[38] W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim and G. Ceder, “Interface
Stability in Solid-State Batteries”, Chem. Mater., 2016, Volume 28, Issue 1,
Pages 266–273
[39] P. J. Lian, B. S. Zhao, L. Q. Zhang, N. Xu, M. T. Wu and X. P. Gao,
“Inorganic sulfide solid electrolytes for all-solid state lithium secondary
Batteries”, J. Mater. Chem. A, 2019, Volume 7, Issue 36, Pages 20540-
20557
[40] H. D. Lim, X. Yue, X. Xing, V. Petrova, M. Gonzalez, H. Liu and P. Liu
“Designing solution chemistries for the low-temperature synthesis of
sulfide-based solid electrolytes”, J. Mater. Chem. A, 2018, Volume 6,
Issue 17, Pages 7370-7374
[41] N. Minafra, K. Hogrefe, F. Barbon, B. Helm, C. Li, H. M. R. Wilkening
and W. G. Zeier, “Two-Dimensional Substitution: Toward a Better
Understanding of the Structure−Transport Correlations in the Li-
Superionic Thio-LISICONs”, Chem. Mater., 2021, Volume 33, Pages
727−740
[42] Y. Seino, T. Ota, K. Takada, A. Hayashic and M. Tatsumisago, “A
sulphide lithium super ion conductor is superior to liquid ion conductors
for use in rechargeable batteries”, Energy & Environmental Science, 2014,
Volume 7, Issue 2, Pages 627-631
[43] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, “A lithium
superionic conductor”, Nature Materials, 2011, Volume 10, Pages 682–686
[44] M. Nagao, A. Hayashi, and M. Tatsumisago, “Bulk-Type Lithium Metal
Secondary Battery with Indium Thin Layer at Interface between Li
Electrode and Li2S-P2S5 Solid Electrolyte”, Electrochemistry, 2012,
Volume 80, Issue 10, Pages 734-736
[45] N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, and T. Sasaki,
“Enhancement of the High-Rate Capability of Solid-State Lithium
Batteries by Nanoscale Interfacial Modification”, Adv. Mater., 2006,
Volume 18, Pages 2226–2229
[46] T. Ohtomo, A. Hayashi, M. Tatsumisago and K. Kawamoto, “All-solid-
state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-
step mechanical milling”, Journal of Solid State Electrochemistry, 2013,
Volume 17, Pages 2551–2557
[47] S. Srivastava, J. L. Schaefer, Z. Yang, Z. Tu and L. A. Archer, “25th
Anniversary Article: Polymer–Particle Composites: Phase Stability and
Applications in Electrochemical Energy Storage”, Adv. Mater., 2014,
Volume 26, Pages 201–234
[48] S. Jayanthi, K. Kulasekarapandian, A. Arulsankar, K. Sankaranarayanan
and B. Sundaresan, “Influence of nano-sized TiO2 on the structural,
electrical, and morphological properties of polymer-blend electrolytes
PEO-PVC-LiClO4”, Journal of Composite Materials, 2015, Volume 49, Issue 9, Pages 1035-1045
[49] Y. Li and H. Wang, “Composite Solid Electrolytes with NASICON-Type
LATP and PVdF−HFP for Solid-State Lithium Batteries”, Ind. Eng. Chem.
Res., 2021, Volume 60, Pages 1494−1500
[50] Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen, Q. Zeng, L. Zhang, W. Liu
and L. Zhang, “Covalently linked metal–organic framework(MOF)-
polymer all-solid-state electrolyte membranes for room temperature high
performance lithium batteries”, J. Mater. Chem. A, 2018, Volume 6, Pages
17227-17234
[51] X. Yuan, C. Sun, J.N. Duan, J. Fan, R. Yuan, J. Chen, J. K. Chang, M.
Zheng and Q. Dong, “A polyoxometalate-based polymer electrolyte with
an improved electrode interface and ion conductivity for high-safety all-
solid-state batteries”, J. Mater. Chem. A, 2019, Volume 7, Pages 15924-
15932
[52] K. Zhu, Y. Liu and J. Liu, “A fast charging/discharging all-solid-state
lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film
electrolyte”, RSC Adv., 2014, Volume 4, Pages 42278-42284
[53] S.K. Kim, Y.C. Jung, D.H. Kim, W.C. Shin, M. Ue and D.W. Kim,
“Lithium-Ion Cells Assembled with Flexible Hybrid Membrane
Containing Li+-Conducting Lithium Aluminum Germanium Phosphate”,
Journal of The Electrochemical Society, 2016, Volume 163, Issue 6,
Pages 974-980
[54] H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo and X. Sun, “Rational Design
of Hierarchical “Ceramic-in-Polymer” and “Polymer-in-Ceramic”
Electrolytes for Dendrite-Free Solid-State Batteries”, Adv. Energy Mater.,
2019, Volume 9, Issue 17, 1804004
[55] S. Chena, J. Wanga, Z. Zhanga, L. Wu, L. Yao, Z. Wei, Y. Deng, D. Xie,
X. Yao and X. Xu, “In-situ preparation of poly(ethylene oxide)/Li3PS4
hybrid polymer electrolyte with good nanofiller distribution for
rechargeable solid-state lithium batteries”, Journal of Power Sources,
2018, Volume 387, Pages 72-80
[56] I. Villaluenga, K. H. Wujcik, W. Tong, D. Devaux, D. H. C. Wong, J. M.
DeSimone and N. P. Balsara, “Compliant glass–polymer hybrid single ion-
conducting electrolytes for lithium batteries”, PNAS, 2016, Volume
113, Issue 1, Pages 52-57
[57] E. Rangasamy, G. Sahu, J. K. Keum, A. J. Rondinone, N. J. Dudney and
C. Liang, “A high conductivity oxide–sulfide composite lithium superionic
conductor”, J. Mater. Chem. A, 2014, Volume 2, Issue 12, Pages 4111-
4116
[58] F. Baskoro, H. Q. Wong and H. J. Yen, “Strategic Structural Design of a
Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery”,
ACS Appl. Energy Mater., 2019, Volume 2, Pages 3937−3971
[59] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, “Electrolytes for Li-
ion transport – Review”, Solid State Ionics, 2015, Volume 276, Pages 107-
126
[60] K. Xu, “Electrolytes and Interphases in Li-Ion Batteries and Beyond”,
Chem. Rev., 2014, Volume 114, Pages 11503−11618
[61] J. H. Baik, S. Kim, D. G. Hong, and J. C. Lee, “Gel Polymer Electrolytes
Based on Polymerizable Lithium Salt and Poly(ethylene glycol) for
Lithium Battery Applications”, ACS Appl. Mater. Interfaces, 2019,
Volume 11, Pages 29718−29724
[62] C. Wang, Q. Sun, Y. Liu, Y. Zhao, X. Li, X. Lin, M. N. Banis, M. Li, W.
Li, K. R. Adair, D. Wang, J. Liang, R. Li, L. Zhang, R. Yang, S. Lu and X.
Sun, “Boosting the Performance of Lithium Batteries with Solid-Liquid
Hybrid Electrolytes:Interfacial Properties and Effects of Liquid
Electrolytes”, Nano Energy, 2018, Volume 48, Pages 35-43
[63] B. Fan, Y. Xu, R. Ma, Z. Luo, F. Wang, X. Zhang, H. Ma, P. Fan, B. Xue
and W. Han, “Will Sulfide Electrolytes be Suitable Candidates for
Constructing a Stable Solid/Liquid Electrolyte Interface?”, ACS Appl.
Mater. Interfaces, 2020, Volume 12, Pages 52845−52856
[64] W. Zhang, J. Nie, F. Li, Z. L. Wang and C. Sun, “A durable and safe solid-
state lithium battery with a hybrid electrolyte Membrane”, Nano Energy,
2018, Volume 45, Pages 413-419
[65] M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P. Bokalawala, I.
Albinsson, B.E. Mellander, “Effect of concentration and grain size of
alumina filler on the ionic conductivity enhancement of the
(PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte”, Journal of Power
Sources, 2003, Volume 119–121, Pages 409–414
[66] W. Gang, J. Roos and D. Brinkmann, “Comparison of NMR and
conductivity in (PEO)8LiClO4+γ-LiAlO2”, Solid State Ionics, 1992,
Volume 53-59, Pages 1102-1105
[67] J. Zhang , N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang and H. Li, “Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide”, Nano Energy, 2016, Volume 28, Pages 447–454
[68] W. Liu, N. Liu, J. Sun,. P.C. Hsu, Y. Li, H. W. Lee and Y. Cui, “Ionic
Conductivity Enhancement of Polymer Electrolytes with Ceramic
Nanowire Fillers”, Nano Lett., 2015, Volume 15, Pages 2740−2745
[69] Y. C. Jung, M. S. Park, C. H. Doh, D. W. Kim, “Organic-inorganic hybrid
solid electrolytes for solid-state lithium cells operating at room
temperature”, Electrochimica Acta, 2016, Volume 218, Pages 271–277
[70] 張育豪, “改善鋰離子電池電性之新穎電解液添加劑”, 碩士論文, 化學
學系, 國立中央大學, 2017
[71] K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, “High lithium ion conducting
solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M =
Ti, Ge and 0 ≤ x ≤ 0.5)”, Journal of the European Ceramic Society, 2015,
Volume 35, Issue 5, Pages 1477-1484
[72] Z. J. Huang, J. Jiang, G. Xue and D. S. Zhou, “β-Phase Crystallization of
Poly(vinylidene fluoride) in Poly(vinylidenefluoride)/Poly(ethyl-
methacrylate) Blends”, Chinese J. Polym. Sci., 2019, Volume 37, Pages
94–100
[73] L. F. Malmonge, J. A. Malmonge and W. K. Sakamoto, “Study of
Pyroelectric Activity of PZT/PVDF-HFP Composite”, Material Research,
2003, Volume 6, No. 4, Pages 469-473
[74] K. Gohel, D. K. Kanchan and C. Maheshwaran, “Electrical and Dielectric Properties of PVdF-HFP –PMMA – (PC+DEC)- LiClO4 Based Gel Polymer Electrolyte”, AIP Conference Proceedings, 2018, Volume 1942, Issue 1, 140081
[75] H. Yu, J. S. Han, G. C. Hwang, J. S. Cho, D. W. Kang and J. K. Kim,
“Optimization of high potential cathode materials and lithium conducting
hybrid solid electrolyte for high-voltage all-solid-state batteries”,
Electrochimica Acta, 2021, Volume 365, 137349
[76] P. Bai, J. Guo, M. Wang, A. Kushima, L. Su, J. Li, F. R. Brushett and M.
Z. Bazant, “Interactions between Lithium Growths and Nanoporous
Ceramic Separators”, Joule, 2018, Volume 2, Issue 11, Pages 2434-2449
[77] P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich, J.
Sann, P. Adelhelm and J. Janek, “Degradation of NASICON-Type
Materials in Contact with Lithium Metal:Formation of Mixed Conducting
Interphases (MCI) on Solid Electrolytes”, J. Phys. Chem. C, 2013, Volume
117, Pages 21064−21074
[78] 葉珈伶, “官能基化二氧化鈦複合電解質於固態鋰電池研究”, 碩士論
文, 化學學系, 國立中央大學, 2019
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2021-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明