參考文獻 |
[1] M. Aller and D. Richstone, “Host galaxy bulge predictors of supermassive black hole
mass,” The Astrophysical Journal, vol. 665, no. 1, p. 120, 2007.
[2] J. E. Barnes and L. E. Hernquist, “Fueling starburst galaxies with gas-rich mergers,” The
Astrophysical Journal, vol. 370, pp. L65–L68, 1991.
[3] J. Barrera-Ballesteros, S. Sánchez, B. Garcı́a-Lorenzo, et al., “Central star formation and
metallicity in califa interacting galaxies,” Astronomy & Astrophysics, vol. 579, A45, 2015.
[4] A. F. Bluck, C. J. Conselice, R. J. Bouwens, et al., “A surprisingly high pair fraction for
extremely massive galaxies at z 3 in the goods nicmos survey,” Monthly Notices of the
Royal Astronomical Society: Letters, vol. 394, no. 1, pp. L51–L55, 2009.
[5] A. Collette, Python and HDF5: unlocking scientific data. ” O’Reilly Media, Inc.”, 2013.
[6] C. Cortijo-Ferrero, R. G. Delgado, E. Pérez, et al., “The spatially resolved star formation
history of mergers-a comparative study of the lirgs ic 1623, ngc 6090, ngc 2623, and mice,”
Astronomy & Astrophysics, vol. 607, A70, 2017.
[7] T. Di Matteo, V. Springel, and L. Hernquist, “Energy input from quasars regulates the
growth and activity of black holes and their host galaxies,” nature, vol. 433, no. 7026,
pp. 604–607, 2005.
[8] A. Feoli, L. Mancini, F. Marulli, et al., “The smbh mass versus mg sigma 2 relation: A
comparison between real data and numerical models,” General Relativity and Gravitation,
vol. 43, no. 4, pp. 1007–1024, 2011.
[9] L. Ferrarese, “Beyond the bulge: A fundamental relation between supermassive black holes
and dark matter halos,” The Astrophysical Journal, vol. 578, no. 1, p. 90, 2002.
[10] L. Ferrarese and D. Merritt, “A fundamental relation between supermassive black holes
and their host galaxies,” The Astrophysical Journal Letters, vol. 539, no. 1, p. L9, 2000.
[11] C. Gaia and G. Bono, “Gaia data release 1. summary of the astrometric, photometric, and
survey properties,” 2016.
[12] A. Georgakakis, D. A. Forbes, and R. P. Norris, “Cold gas and star formation in a merging
galaxy sequence,” Monthly Notices of the Royal Astronomical Society, vol. 318, no. 1,
pp. 124–138, 2000.
[13] A. W. Graham and S. P. Driver, “A log-quadratic relation for predicting supermassive
black hole masses from the host bulge sérsic index,” The Astrophysical Journal, vol. 655,
no. 1, p. 77, 2007.
[14] A. W. Graham, P. Erwin, N. Caon, et al., “A correlation between galaxy light concentration
and supermassive black hole mass,” The Astrophysical Journal Letters, vol. 563,
no. 1, p. L11, 2001.
[15] E. Griv, M. Gedalin, P. Pietrukowicz, et al., “The distance from the sun to the centre and
the shape of the old bulge in the galaxy: 16 221 ogle rr lyrae stars,” Monthly Notices of
the Royal Astronomical Society, vol. 499, no. 1, pp. 1091–1098, 2020.
[16] M. Y. Grudić, P. F. Hopkins, C.-A. Faucher-Giguère, et al., “When feedback fails: The
scaling and saturation of star formation efficiency,” Monthly Notices of the Royal Astronomical
Society, vol. 475, no. 3, pp. 3511–3528, 2018.
[17] N. Häring and H.-W. Rix, “On the black hole mass-bulge mass relation,” The Astrophysical
Journal Letters, vol. 604, no. 2, p. L89, 2004.
[18] P. F. Hopkins, “A new class of accurate, mesh-free hydrodynamic simulation methods,”
Monthly Notices of the Royal Astronomical Society, vol. 450, no. 1, pp. 53–110, 2015.
[19] P. F. Hopkins, L. Hernquist, T. J. Cox, et al., “A unified, merger-driven model of the origin
of starbursts, quasars, the cosmic x-ray background, supermassive black holes, and galaxy
spheroids,” The Astrophysical Journal Supplement Series, vol. 163, no. 1, p. 1, 2006.
[20] P. F. Hopkins and E. Quataert, “An analytic model of angular momentum transport by
gravitational torques: From galaxies to massive black holes,” Monthly Notices of the Royal
Astronomical Society, vol. 415, no. 2, pp. 1027–1050, 2011.
[21] P. F. Hopkins, P. Torrey, C.-A. Faucher-Giguère, et al., “Stellar and quasar feedback in
concert: Effects on agn accretion, obscuration, and outflows,” Monthly Notices of the Royal
Astronomical Society, vol. 458, no. 1, pp. 816–831, 2016.
[22] P. F. Hopkins, A. Wetzel, D. Kereš, et al., “Fire-2 simulations: Physics versus numerics
in galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 480, no. 1,
pp. 800–863, 2018.
[23] J. D. Hunter, “Matplotlib: A 2d graphics environment,” IEEE Annals of the History of
Computing, vol. 9, no. 03, pp. 90–95, 2007.
[24] K. V. Johnston, L. Hernquist, and M. Bolte, “Fossil signatures of ancient accretion events
in the halo,” arXiv preprint astro-ph/9602060, 1996.
[25] R. Joseph and G. Wright, “Recent star formation in interacting galaxies–ii. super starbursts
in merging galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 214,
no. 2, pp. 87–95, 1985.
[26] M. Kaufman, K. Sheth, C. Struck, et al., “Co observations of the interacting galaxy pair
ngc 5394/95,” The Astronomical Journal, vol. 123, no. 2, p. 702, 2002.
[27] J.-h. Kim, O. Agertz, R. Teyssier, et al., “The agora high-resolution galaxy simulations
comparison project. ii. isolated disk test,” The Astrophysical Journal, vol. 833, no. 2,
p. 202, 2016.
[28] J.-h. Kim, J. H. Wise, and T. Abel, “Galaxy mergers with adaptive mesh refinement:
Star formation and hot gas outflow,” The Astrophysical Journal Letters, vol. 694, no. 2,
p. L123, 2009.
[29] A. King and K. Pounds, “Powerful outflows and feedback from active galactic nuclei,”
Annual Review of Astronomy and Astrophysics, vol. 53, pp. 115–154, 2015.
[30] J. H. Knapen, M. Cisternas, and M. Querejeta, “Interacting galaxies in the nearby universe:
Only moderate increase of star formation,” Monthly Notices of the Royal Astronomical
Society, vol. 454, no. 2, pp. 1742–1750, 2015.
[31] J. Kormendy and L. C. Ho, “Coevolution (or not) of supermassive black holes and host
galaxies,” Annual Review of Astronomy and Astrophysics, vol. 51, pp. 511–653, 2013.
[32] J. Kormendy and D. Richstone, “Inward bound—the search for supermassive black holes
in galactic nuclei,” Annual Review of Astronomy and Astrophysics, vol. 33, no. 1, pp. 581–
624, 1995.
[33] A. Lamberts, S. Garrison-Kimmel, D. Clausen, et al., “When and where did gw150914
form?” Monthly Notices of the Royal Astronomical Society: Letters, vol. 463, no. 1, pp. L31–
L35, 2016.
[34] T. R. Lauer, S. Faber, D. Richstone, et al., “The masses of nuclear black holes in luminous
elliptical galaxies and implications for the space density of the most massive black holes,”
The Astrophysical Journal, vol. 662, no. 2, p. 808, 2007.
[35] E. Li, “Modelling mass distribution of the milky way galaxy using gaia billion-star map,”
arXiv preprint arXiv:1612.07781, 2016.
[36] D. Lynden-Bell, “Galactic nuclei as collapsed old quasars,” Nature, vol. 223, no. 5207,
pp. 690–694, 1969.
[37] J. Magorrian, S. Tremaine, D. Richstone, et al., “The demography of massive dark objects
in galaxy centers,” The Astronomical Journal, vol. 115, no. 6, p. 2285, 1998.
[38] A. Marconi and L. K. Hunt, “The relation between black hole mass, bulge mass, and
near-infrared luminosity,” The Astrophysical Journal Letters, vol. 589, no. 1, p. L21, 2003.
[39] R. McLure and J. Dunlop, “On the black hole-bulge mass relation in active and inactive
galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 331, no. 3, pp. 795–804,
2002.
[40] C. Mihos and L. Hernquist, “Gasdynamics and starbursts in major mergers,” arXiv preprint
astro-ph/9512099, 1995.
[41] D. J. Mortlock, S. J. Warren, B. P. Venemans, et al., “A luminous quasar at a redshift of
z= 7.085,” Nature, vol. 474, no. 7353, pp. 616–619, 2011.
[42] T. Naab and A. Burkert, “Statistical properties of collisionless equal-and unequal-mass
merger remnants of disk galaxies,” The Astrophysical Journal, vol. 597, no. 2, p. 893, 2003.
[43] M. Neeleman, J. X. Prochaska, N. Kanekar, et al., “A cold, massive, rotating disk galaxy
1.5 billion years after the big bang,” Nature, vol. 581, no. 7808, pp. 269–272, 2020.
[44] C. Park and Y.-Y. Choi, “Combined effects of galaxy interactions and large-scale environment
on galaxy properties,” The Astrophysical Journal, vol. 691, no. 2, p. 1828, 2009.
[45] W. Pearson, L. Wang, M. Alpaslan, et al., “Effect of galaxy mergers on star-formation
rates,” Astronomy & Astrophysics, vol. 631, A51, 2019.
[46] V. Perret, F. Renaud, B. Epinat, et al., “Evolution of the mass, size, and star formation
rate in high redshift merging galaxies-mirage–a new sample of simulations with detailed
stellar feedback,” Astronomy & Astrophysics, vol. 562, A1, 2014.
[47] L. Posti and A. Helmi, “Mass and shape of the milky way’s dark matter halo with globular
clusters from gaia and hubble,” Astronomy & Astrophysics, vol. 621, A56, 2019.
[48] D. J. Price, “Splash: An interactive visualisation tool for smoothed particle hydrodynamics
simulations,” Publications of the Astronomical Society of Australia, vol. 24, no. 3, pp. 159–
173, 2007.
[49] E. Quataert, R. Narayan, and M. J. Reid, “What is the accretion rate in sagittarius a*?”
The Astrophysical Journal Letters, vol. 517, no. 2, p. L101, 1999.
[50] T. R. Saitoh, H. Daisaka, E. Kokubo, et al., “Toward first-principle simulations of galaxy
formation: Ii. shock-induced starburst at a collision interface during the first encounter
of interacting galaxies,” Publications of the Astronomical Society of Japan, vol. 61, no. 3,
pp. 481–486, 2009.
[51] D. Sanders and I. Mirabel, “Luminous infrared galaxies,” Annual Review of Astronomy
and Astrophysics, vol. 34, no. 1, pp. 749–792, 1996.
[52] F. Schweizer, “Merger-induced starbursts,” in Starbursts, Springer, 2005, pp. 143–152.
[53] J. L. Sersic, “Atlas de galaxias australes,” Cordoba, 1968.
[54] N. Soker and Y. Meiron, “Correlation of black hole and bulge masses: Driven by energy but
correlated with momentum,” Monthly Notices of the Royal Astronomical Society, vol. 411,
no. 3, pp. 1803–1808, 2011.
[55] V. Springel, “The cosmological simulation code gadget-2,” Monthly notices of the royal
astronomical society, vol. 364, no. 4, pp. 1105–1134, 2005.
[56] V. Springel, T. Di Matteo, and L. Hernquist, “Modelling feedback from stars and black
holes in galaxy mergers,” Monthly Notices of the Royal Astronomical Society, vol. 361,
no. 3, pp. 776–794, 2005.
[57] V. Springel and L. Hernquist, “Cosmological smoothed particle hydrodynamics simulations:
A hybrid multiphase model for star formation,” Monthly Notices of the Royal Astronomical
Society, vol. 339, no. 2, pp. 289–311, 2003.
[58] E. Takeo, K. Inayoshi, K. Ohsuga, et al., “Super-eddington growth of black holes in the
early universe: Effects of disc radiation spectra,” Monthly Notices of the Royal Astronomical
Society, vol. 488, no. 2, pp. 2689–2700, 2019.
[59] A. Toomre, “Mergers and some consequences,” in Evolution of Galaxies and Stellar Populations,
1977, p. 401.
[60] S. Tremaine, K. Gebhardt, R. Bender, et al., “The slope of the black hole mass versus
velocity dispersion correlation,” The Astrophysical Journal, vol. 574, no. 2, p. 740, 2002.
[61] E. Valenti, M. Zoccali, O. Gonzalez, et al., “Stellar density profile and mass of the milky
way bulge from vvv data,” Astronomy & Astrophysics, vol. 587, p. L6, 2016.
[62] B. Venemans, E. Bañados, R. Decarli, et al., “The identification of z-dropouts in panstarrs1:
Three quasars at 6.5< z< 6.7,” The Astrophysical Journal Letters, vol. 801, no. 1,
p. L11, 2015.
[63] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “Scipy 1.0: Fundamental algorithms for
scientific computing in python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.
[64] M. Volonteri and M. J. Rees, “Rapid growth of high-redshift black holes,” The Astrophysical
Journal, vol. 633, no. 2, p. 624, 2005.
[65] A. Wandel, “Black holes of active and quiescent galaxies. i. the black hole-bulge relation
revisited,” The Astrophysical Journal, vol. 565, no. 2, p. 762, 2002.
[66] S. D. White and M. J. Rees, “Core condensation in heavy halos: A two-stage theory for
galaxy formation and clustering,” Monthly Notices of the Royal Astronomical Society,
vol. 183, no. 3, pp. 341–358, 1978.
[67] R. P. Wiersma, J. Schaye, and B. D. Smith, “The effect of photoionization on the cooling
rates of enriched, astrophysical plasmas,” Monthly Notices of the Royal Astronomical
Society, vol. 393, no. 1, pp. 99–107, 2009.
[68] X.-B. Wu and J. Han, “On black hole masses, radio-loudness and bulge luminosities of
seyfert galaxies,” Astronomy & Astrophysics, vol. 380, no. 1, pp. 31–39, 2001.
34. |