博碩士論文 108324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:18.117.94.25
姓名 楊佳翎(Chia-Ling Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 節能多晶型L-谷氨酸的晶體工程與乾燥性質研究
(Crystal Engineering of the Energy-Saving Polymorph of L-Glutamic Acid for Drying)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 節能減碳是一個重要的全球性議題。其中乾燥程序在整個工業過程中即佔能源消耗的12%。因此,改善乾燥性能可以大幅降低能耗。然而與乾燥行為有關的多晶型物的信息很少。本研究的目的是探討不同的L-谷氨酸多晶型體對乾燥行為的影響,並藉由實驗設計(DoE)找出製備窄粒徑分布的α型L-谷氨酸晶體的方法。本研究第一部分為多晶型物的乾燥實驗。通過反應結晶分別製備了α-L-谷氨酸和β-L-谷氨酸的晶體,並將反應產物用於40°C乾燥實驗,記錄失重與時間的關係。可以發現,α-L-谷氨酸晶體具有較短的總乾燥時間。 β-L-谷氨酸晶體由於其晶體分子表面結構而更易於在其濾餅中保留水分。結果,α-L-谷氨酸晶體在乾燥過程中顯示出更好的節能性能,相較於β-L-谷氨酸可節省35%用於乾燥的能量。第二部分為製程設計,期能獲得均勻且足夠大的α-L-谷氨酸晶體。利用田口法尋找較佳的操作條件,選擇四項參數及三個水準,分別為(1) 1M硫酸水溶液的添加速度,(2)反應溫度,(3)反應槽攪拌速度,(4)添加物L-苯丙胺酸的濃度。根據回應表選擇適當的參數組合,以產生所需粒徑的α-L-谷氨酸。在四個參數中,反應溫度對系統穩定性影響最大,溫度越高,系統越容易受到其他條件的影響。此外,能得到最窄粒徑分布的組合為:1M硫酸水溶液的添加速度為1 mL/s,反應溫度為35℃,反應槽攪拌速度為500 rpm,添加物L-苯丙胺酸的濃度為5.20×10-2 M。這些資訊將有助於進一步放大製程。
摘要(英) Energy-saving is an important global issue. Drying, especially, occupies 12% of the energy consumption in the entire process in the industry. Therefore, improving the drying behavior could greatly reduce energy consumption. However, information on polymorphs related to drying behavior is missing. The purpose of this study is to investigate the effects of polymorphs of L-glutamic acid crystals on drying behavior, and to design a process to prepare pure α form L-glutamic acid crystals with uniform particle size. The first part of this study is the drying experiments of polymorphism. The crystals of α-L-glutamic acid and β-L-glutamic acid have been prepared by reaction crystallization in this study, respectively. All these reaction products were used for 40°C drying experiments, where weight loss was recorded as a function of time. It could be found that α-L-glutamic acid crystals exhibited a less total drying time. β-L-glutamic acid crystals were easier to retain moisture in their filter cake due to their crystal molecular surface structure. Consequently, α-L-glutamic acid crystals displayed better energy-saving performance in the drying process, reducing α-L-Glu crystals could save 35% of the energy consumption used in drying compared to the produced β-L-Glu crystals. The second part of this study is process design. This study uses the Taguchi Method to look for the optimal parameters to produce α-L-Glu crystals with desired particle size and particle size distribution. The selected parameters include: (1) addition rate of 1M sulfuric acid(aq) (2) reaction temperature, (3) stirring rate, and (4) concentration of L-phenylalanine (L-Phe). According to the response table and figure, the appropriate combination should be selected to produce the desired particle size. Among the four parameters, reaction temperature has the greatest impact on the stability of the system. In addition, the optimal combination that could give the narrowest particle size distribution is 1M H2SO4(aq) addition rate of 1 mL/s, the concentration of L-Phe of 5.20×10-2 M, reaction temperature of 35℃, and stirring rate of 500 rpm. That information will help to further scale up the process.
關鍵字(中) ★ 節能
★ 谷氨酸
★ 乾燥
★ 多晶型
★ 結晶
關鍵字(英) ★ Energy-Saving
★ L-Glutamic Acid
★ Drying
★ Polymorph
★ Crystallization
論文目次 摘要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Figures vi
List of Tables viii
List of Schemes ix
Chapter 1 Introduction 1
1.1 Energy 1
1.2 Drying 4
1.3 Polymorphism 6
1.4 L-Glu and MSG Industry 8
1.5 DoE and Factors of Controlling Particle Size 11
1.6 Conceptual Framework 14
Chapter 2 Experimental Sections 15
2.1 Materials 15
2.1.1 Chemicals 15
2.1.2 Solvents 15
2.2 Experimental Methods 17
2.2.1 Initial Solvent Screening of L-Glu 17
2.2.2 Solubility Measurement of L-Glu in Water 18
2.2.3 Reactive Crystallization of L-Glu and Drying Procedures 19
2.2.4 Drying of α-L-Glu and β-L-Glu with the Same Particle Size 23
2.2.5 Design of Experiments for Preparation of α-L-Glu 24
2.3 Analytical Instruments 28
2.3.1 Optical Microscopy 28
2.3.2 Powder X-ray Diffraction 28
2.3.3 Differential Scanning Calorimetry 29
2.3.4 Fourier Transform Infrared Spectroscopy 30
Chapter 3 Results and Discussion 31
3.1 Solid-state Characterization of L-Glu 31
3.1.1 Initial Solvent Screening 31
3.1.2 Solubility Curves of L-Glu 34
3.1.3 PXRD Patterns 35
3.1.4 DSC Scans 37
3.2 Reactive Crystallization of α-L-Glu and β-L-Glu 38
3.3 DoE for Controlling Particle Size of α-L-Glu 62
3.3.1 Addition Rate of 1M H2SO4(aq) 69
3.3.2 Reaction Temperature 72
3.3.3 Stirring Rate 73
3.3.4 Concentration of L-Phe 74
Chapter 4 Conclusion and Future Works 77
References 79
參考文獻 1. Abdelaziz, E.A.; Saidur, R.; And Mekhilef, S. A Review on Energy Saving Strategies in Industrial Sector. Renewable Sustainable Energy Rev. 2011, 15(1), 150-168.
2. Schneider, S. H. The Greenhouse Effect: Science and Policy. Science 1989, 243(4892), 771-781.
3. Patlitzianas, K. D.; Doukas, H.; Kagiannas, A. G.; Psarras, J. Sustainable Energy Policy Indicators: Review and Recommendations. Renewable Energy 2008, 33(5), 966-973.
4. Oikonomou, V.; Becchis, F.; Steg, L.; Russolillo, D. Energy Saving and Energy Efficiency Concepts for Policy Making. Energy Policy 2009, 37(11), 4787-4796.
5. Lu, Y.; Khan, Z. A.; Alvarez-Alvarado, M. S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12(12), 5078.
6. Lund, H. Renewable Energy Strategies for Sustainable Development. Energy 2007, 32(6), 912-919.
7. Dincer, I. Renewable Energy And Sustainable Development: A Crucial Review. Renewable Sustainable Energy Rev. 2000, 4(2), 157-175.
8. Taiwan Power Company. https://www.taipower.com.tw/d006/loadGraph/loadGraph/genshx_.html (accessed 2021-06-18).
9. Energy Information Administration, EIA(2019). International Energy Outlook 2019. https://www.eia.gov/outlooks/ieo/pdf/ieo2019.pdf (accessed 2021-06-16).
10. Compton, M.; Willis, S.; Rezaie, B.; Humes K. Food Processing Industry Energy and Water Consumption in the Pacific Northwest. Innovative Food Sci. Emerging Technol. 2018, 47, 371-383.
11. Li, H.; Marechal, F.; Favrat, D. Power And Cogeneration Technology Environomic Performance Typification in the Context of CO2 Abatement Part II: Combined Heat and Power Cogeneration. Energy 2010, 35(9), 3517-3523.
12. Sangpraserdsuk, T.; Phiriyawirut, M.; Ngaotrakanwiwat, P.; Wootthikanokkhan, J. Mechanical, Optical, and Photochromic Properties of Polycarbonate Composites Reinforced With Nano-Tungsten Trioxide Particles. J. Reinf. Plast. Compos. 2017, 36(16), 1168–1182.
13. Eshetu, G. G.; Figgemeier, E. Confronting The Challenges of Next-Generation Silicon Anode-Based Lithium-Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders. Chemsuschem 2019, 12(12), 2515-2539.
14. Goede, R. de. Improvement of Melt Crystallization’s Efficiency For Industrial Applications. In Energy Efficiency In Process Technology; Pilavachi, P. A., Ed.; Springer Netherlands: Dordrecht, Netherlands, 1993; pp 423-436.
15. Farahani, M.; Jahani, Y. An Approach for Prediction Optimum Crystallization Conditions for Formation of Beta Polypropylene by Response Surface Methodology (RSM). Polym. Test. 2021, 93, 106921.
16. Quist-Jensen, C.A.;Macedonio, F.; Horbez, D.; Drioli, E. Reclamation of Sodium Sulfate From Industrial Wastewater by Using Membrane Distillation and Membrane Crystallization. Desalination 2017, 401(2), 112-119.
17. Drioli, E.; Profio, G. D.; Curcio, E. Progress In Membrane Crystallization. Curr. Opin. Chem. Eng. 2012, 1(2), 178-182.
18. Steven J. Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; Clack, T. M.; Cohen, A. Doig, S.; Edmonds, J.; Fennell, P.; Field, C. B.; Hannegan, B.; Hodge, B.-M.; Hoffert, M. I.; Ingersoll, E.; Jaramillo, P.; Lackner, K. S.; Mach, K. J.; Mastrandrea, M.; Ogden, J.; Peterson. P. F.; Sanchez, D. L.; Sperling, D.; Stagner, J.; Trancik, J. E.; Yang, C.-J.; Caldeira, K. Net-Zero Emissions Energy Systems. Science 2018, 360(6396), Eaas9793.
19. Dincer, I.; Ezzat M. F. Geothermal Energy Production. In Comprehensive Energy Systems, Third ed.; Dincer, I. Ed.; Elsevier: Amsterdam, Netherlands, 2018; pp 252-303.
20. Strumiłło, C.; Jones, P. L.; Zyłła, R. Energy Aspects in Drying. In Handbook of Industrial Drying, Third ed.; Mujumdar A.S., Ed.; Taylor & Francis Group: Abingdon, 2014; pp 1075–1102.
21. Mujumdar, A.S. Guide to Industrial Drying: Principles, Equipment and New Developments; Mujumdar, A.S. Ed.; Colors Publication: Mumbai, India, 2008.
22. Berk, Z. Dehyration. In Food Process Engineering and Technology; Berk, Z. Ed.; Elsevier: Amsterdam, Netherlands, 2009; pp 459-510.
23. Saravacos, G. D.; Kostaropoulos, A. E. Handbook of Food Processing Equipment; Kluwer Academic/Plenum Publishers: New York, United States, 2002.
24. Phisut, N. Factors Affecting Mass Transfer During Osmotic Dehydration of Fruits. Int. Food Res. J. 2012, 19(1), 7-18.
25. Vijayavenkataraman, S.; Iniyan, S.; Goic, R. A Review of Solar Drying Technologies. Renewable Sustainable Energy Rev. 2012, 16(5), 2652-2670.
26. Hnin, K. K.; Zhang, M.; Mujumdar A.S.; Zhu, Y. Emerging Food Drying Technologies with Energy-Saving Characteristics: A Review. Drying Technol. 2019, 37(12), 1465-1480.
27. Orsat, V.; Yang, W.; Changrue, V.; Raghavan, G.S.V. Microwave-Assisted Drying Of Biomaterials. Food Bioprod. Process. 2007, 85(3), 255-263.
28. Kamarulzaman, A.; Hasanuzzaman, M.; Rahim, N.A. Global Advancement of Solar Drying Technologies and Its Future Prospects: A Review. Sol. Energy 2021, 221, 559-582.
29. Celma, A. R.; Rojas, S.; Lopez-Rodriguez, F. Mathematical Modelling of Thin-Layer Infrared Drying of Wet Olive Husk. Chem. Eng. Process. 2008, 47(9-10), 1810–1818.
30. Sorrentino, R.; Bianchi, G.; Chang, K. Microwave and RF Engineering; Wiley: New York, United States, 2010.
31. Wray, D.; Ramaswamy, H. S. Novel Concepts in Microwave Drying of Foods. Dry. Technol. 2015, 33(7), 769–783.
32. Scherer, G.W. Theory of Drying. J. Am. Ceram. Soc. 1990, 73(1), 3-14.
33. Gutoff, E. B.; Cohen, E. D. Water- and Solvent-Based Coating Technology. In Multilayer Flexible Packaging, Second ed.; Wagner, J. R., Jr. Ed.; William Andrew: New York, United States, 2016.
34. Bernstein, J., Polymorphism in Molecular Crystals, Second ed.; International Union of Crystallography: Chester, England, 2020.
35. Blagden, N.; Davey, R. J., Polymorph Selection: Challenges for The Future? Cryst. Growth Des. 2003, 3 (6), 873-885.
36. Raza, K.; Kumar, P.; Ratan, S.; Malik, R.; Arora, S. Polymorphism: The Phenomenon Affecting the Performance of Drugs. SOJ Pharm. Pharm. Sci. 2014, 1(10).
37. Callow, R. K.; Kennard, O. Polymorphism of Cortisone Acetate. J. Pharm. Pharmacol. 1961, 13(1), 723-733.
38. Tuladhar, M. D.; Carless, J. E.; Summers, M. P. Thermal Behaviour and Dissolution Properties of Phenylbutazone Polymorphs. J. Pharm. Pharmacol. 1983, 35(4), 208-214.
39. Munroe, Á.; Rasmuson, Å. C.; Hodnett, B. K.; Croker, D. M. Relative Stabilities of the Five Polymorphs of Sulfathiazole. Cryst. Growth Des. 2012, 12(6), 2825–2835.
40. Levi, G.; Procknal, J.A. Dissolution Rate Studies on Methylprednisolone Polymorphs. J Pharm Sci. 1964, 53, 656-658.
41. Aguiar, A.J.; Zelmer, J.E. Dissolution Behavior of Polymorphs of Chloramphenicol Palmitate and Mefanamic Acid. J. Pharm. Sci. 1969, 58(8), 983–987.
42. Shah, J. C.; Chen, J. R.; Chow, D. Metastable Polymorph of Etoposide with Higher Dissolution Rate. Drug Dev. Ind. Pharm. 1999, 25(1), 63-67.
43. Ragnarsson, G.; Sjögren, J. Compressibility and Tablet Properties of Two Polymorphs of Metoprolol Tartrate. Acta Pharm. Suec. 1984, 21(6), 321-330.
44. Turner, T. D.; Gajjar, P.; Fragkopoulos, I. S.; Carr, J.; Nguyen, T. T. H.; Hooper, D.; Clarke, F.; Dawson, N.; Withers, P. J.; Roberts, K. J. Measuring The Particle Packing of L-Glutamic Acid Crystals Through X-Ray Computed Tomography for Understanding Powder Flow and Consolidation Behavior. Cryst. Growth Des. 2020, 20(7), 4252–4263.
45. Beyer, T.; Day, G. M.; Price, S. L. The Prediction, Morphology and Mechanical Properties of the Polymorphs of Paracetamol. J. Am. Chem. Soc. 2001, 123(21), 5086–5094.
46. Bonfilio, R.; Souza, M. C. O.; Leal, J. S.; Viana, O. M. M. S.; Doriguetto, A. C.; Araújo, M. B. D. Solubility and Dissolution Studies of Tibolone Polymorphs. Braz. J. Pharm. Sci. 2017, 53(4).
47. Sanphui, P.; Goud, N. R.; Khandavilli, U. B. R.; Bhanoth, S. ; Nangia, A. New Polymorphs of Curcumin. Chem. Commun., 2011, 47, 5013-5015.
48. Xu, J.; Gong, X.-F.; Li, P.; Chen, X.-F.; Wang, H.-P.; Ning, L.-F. Mifepristone Polymorph With Enhanced Solubility, Dissolution and Oral Bioavailability. Steroids 2020, 159, 108649.
49. Viscomi, G.C.; Campana, M.; Barbanti, M.; Grepioni, F.; Polito, M.; Confortini, D.; Rosini, G.; Righi, P.; Cannata, V.; Braga, D. Crystal Forms of Rifaximin and Their Effect on Pharmaceutical Properties. Cryst. Eng. Commun. 2008, 10, 1074–1081.
50. Tandon, R.; Tandon, N.; Gupta, N.; Gupta, R. Polymorphism Begins with Nucleation. Asian J. Chem. 2018, 30(1), 5-14.
51. Lee, T. Yeh, K. L.; You, J. X; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible Crystallization of Sodium Dodecyl Sulfate·1/8 Hydrate by Evaporation, Antisolvent Addition, And Cooling. ACS Omega 2020, 5(2), 1068-1079.
52. Majano, G.; Darwiche, A.; Mintova, S.; Valtchev, V. Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Ind. Eng. Chem. Res. 2009, 48(15), 7084–7091.
53. Jones, A.G.; Mullin, J.W. Programmed Cooling Crystallization of Potassium Sulphate Solutions. Chem. Eng. Sci. 1974, 29(1), 105-118.
54. Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.L.; Lee, S. W.; Hu, J. C.; Chen, L. T. Stabilization and Spheroidization of Ammonium Nitrate: Co-Crystallization with Crown Ethers and Spherical Crystallization by Solvent Screening. Chem. Eng. J. 2013, 225(1), 809-817.
55. Pratama, D. E.; Hsieh, W.-C.; Elmaamoun, A.; Lee, H. L.; Lee, T. Recovery of Active Pharmaceutical Ingredients from Unused Solid Dosage-Form Drugs. ACS Omega 2020, 5(45), 29147-29157.
56. Shahidzadeh-Bonn, N,; Rafaı̈, S.; Bonn, D.; Wegdam, G. Salt Crystallization During Evaporation: Impact of Interfacial Properties. Langmuir 2008, 24(16), 8599–8605.
57. Fuchs, D.; Fischer, J.; Tumakaka, F.; Sadowski, G. Solubility of Amino Acids:  Influence of The Ph Value and the Addition of Alcoholic Cosolvents on Aqueous Solubility. Ind. Eng. Chem. Res. 2006, 45(19), 6578–6584.
58. Chang, L.-C.; Caira, M. R.; Guillory, J. K. Solid State Characterization of Dehydroepiandrosterone. J. Phys. Chem. 1995, 84(10), 1169-1179.
59. Bakar, M. R. A.; Nagy, Z. K.; Rielly, C. D. Seeded Batch Cooling Crystallization with Temperature Cycling for the Control of Size Uniformity and Polymorphic Purity of Sulfathiazole Crystals. Org. Process Res. Dev. 2009, 13(6), 1343–1356.
60. Kaneko, F.; Sakashita, H.; Kobayashi, M.; Suzuki, M. Infrared Spectroscopic and Chemical Etching Study on The Crystallization Process of the B and E Forms of Stearic Acid: Roles of Dislocations in Single Crystals. J. Phys. Chem. 1994, 98(14), 3801–3808.
61. Ni, X.; Liao, A. Effects of Cooling Rate and Solution Concentration on Solution Crystallization of L-Glutamic Acid in an Oscillatory Baffled Crystallizer. Cryst. Growth Des. 2008, 8(8), 2875–2881.
62. Garti, N.; Wellner, E.; Sarig, S. Stearic Acid Polymorphs in Correlation with Crystallization Conditions and Solvents. Cryst. Res. Technol. 1980, 15(11), 1303-1310.
63. Martínez-Ohárriz, M. C.; Martín, C.; Goñi, M. M.; Rodríguez-Espinosa, C.; Ilarduya-Apaolaza, M. C. T. D. Polymorphism of Diflunisal: Isolation and Solid-State Characteristics of a New Crystal Form. J. Pharm. Sci. 1994, 83(2), 174-177.
64. Wu, L.-S.; Torosian, G.; Sigvardson, K.; Gerard, C.; Hussain, M.A. Investigation of Moricizine Hydrochloride Polymorphs. J. Pharm. Sci. 1994, 83(10), 1404-1406.
65. Nowee, S. M.; Abbas, A.; Romagnol, J. A. Optimization In Seeded Cooling Crystallization: a Parameter Estimation and Dynamic Optimization Study. Chem. Eng. Process. 2007, 46(11), 1096-1106.
66. Kitamura, M. Polymorphism in the Crystallization of L-Glutamic Acid. J. Cryst. Growth 1989, 96(3), 541-546.
67. Ault, A. The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids. J. Chem. Educ. 2004, 81(3), 347-355.
68. Sano, C. History of Glutamate Production. Am. J. Clin. Nutr. 2009, 90 (3), 728S-732S.
69. Ikeda, K. A Production Method of Seasoning Mainly Consists of Salt of L-Glutamic Acid. U.S. Patent 1,582,472A, Apr. 17, 1926.
70. Yu, F.; Guan, D.; Zhang, Z.; Zhao, L.; Zang L. Assessment of Life Cycle Environmental Benefits in Monosodium Glutamate Production in China. Research Square. Preprint. 22 Mar, 2021, DOI:10.21203/rs.3.rs-312595/v1. (accessed 2021-07-06).
71. High-Efficiency Method For Fermentation Production of L-Glutamic Acid. China Patent 101402979A, Apr. 08, 2009.
72. New Production Technique of Sodium Glutamate. China Patent 101491323b, Dec. 26, 2012.
73. Sugita,Y.-H. Polymorphism of L-Glutamic Acid Crystals and Inhibitory Substance For β-Transition In Beet Molasses. Agric. Biol. Chem. 1988, 52(12), 3081 -3085.
74. Monosodium Glutamate No. 2 is Imitated and is Evaporated Crystal System Against Current. China Patent 205627163u, Oct. 12, 2016.
75. Multi-Efficient Evaporation Technology for Monosodium Glutamate Neutralization Liquid. China Patent 101120767a, Feb. 13, 2008.
76. Monosidum Glutamate Industrial Wastewater Recycling Process and Device. China Patent 103043858b, Dec. 18, 2013.
77. Wibowo, C.; Chang, W.-C.; Ng, K. M. Design of Integrated Crystallization Systems, Aiche J. 2001, 47(11), 2474–2492.
78. Jones, A. G.; Budz, J.; Mullin, J. W. Batch Crystallization and Solid-Liquid Separation of Potassium Sulphate. Chem. Eng. Sci. 1987, 42(4), 619–629.
79. Ochsenbein, D. R.; Vetter, T.; Morari, M.; Mazzotti, M. Agglomeration of Needle-Like Crystals in Suspension. II. Modeling Cryst. Growth Des. 2015, 15(9), 4296–4310.
80. Turner, T. D.; Gajjar, P.; Fragkopoulos, I. S.; Carr, J.; Nguyen, T. T. H.; Hooper, D.; Clarke, F.; Dawson, N.; Withers, P. J.; Roberts, K. J. Measuring the Particle Packing of L-Glutamic Acid Crystals Through X-Ray Computed Tomography for Understanding Powder Flow and Consolidation Behavior. Cryst. Growth Des. 2020, 20(7), 4252–4263.
81. Mougin, P.; Wilkinson, D.; Roberts, K. J. In Situ Measurement of Particle Size During the Crystallization of L-Glutamic Acid Under Two Polymorphic Forms: Influence of Crystal Habit on Ultrasonic Attenuation Measurements. Cryst. Growth Des. 2002, 2(3), 227– 234.
82. Ferrari, E.S.; Davey, R. J. Solution-Mediated Transformation of α to β L-Glutamic Acid: Rate Enhancement Due to Secondary Nucleation. Cryst. Growth Des. 2004, 4(5), 1061-1068.
83. Kee, N. C. S.; Tan, R. B. H.; Braatz, R. D. Selective Crystallization of the Metastable α-Form of L-Glutamic Acid Using Concentration Feedback Control. Cryst. Growth Des. 2009, 9(7), 3044–3051.
84. Shi, H.; Li, F.; Huang, X.; Wang, T.; Bao, Y.; Yin, Q.; Xie, C.; Hao, H. Screening and Manipulation of L-Glutamic Acid Polymorphs by Antisolvent Crystallization in an Easy-To-Use Microfluidic Device. Ind. Eng. Chem. Res. 2020, 59(13), 6102–6111.
85. Zhang, F.; Liu, T.; Huo, Y.; Guan, R.; Wang X. Z. Investigation of The Operating Conditions to Morphology Evolution of β-L-Glutamic Acid During Seeded Cooling Crystallization. J. Cryst. Growth 2017, 469(1), 136-143.
86. Sakata, Y. Studies on The Polymorphism of L-Glutamic Acid. Studies on The Polymorphism of L-Glutamic Acid. Part I. Effects of Coexisting Substances on Polymorphic Crystallizationpart II. Measurement of Solubilities. Agric. Biol. Chem. 1961, 25(11), 829–837.
87. Sakata, Y.; Takenochi, K. Studies on The Polymorphism of L-Glutamic Acid. Studies on The Polymorphism of L-Glutamic Acid. Part VI. Separation of L-Glutamic Acid From The Fermentation Broth. Agric. Biol. Chem. 1963, 27(3), 205–209.
88. Cashell, C.; Corcoran, D.; Hodnett, B. K. Effect of Amino Acid Additives on the Crystallization of L-Glutamic Acid. Cryst. Growth Des. 2005, 5(2), 593–597.
89. Roudsari, S. F.; Dhib, R.; Ein-Mozaffari, F. Mixing Effect on Emulsion Polymerization in a Batch Reactor. Polym. Eng. Sci. 2015, 55(4), 945-956.
90. Sumaiya, Z. A.; Chuah, A. L.; Koay, G. F. L.; Choong, T. S. Y. Effects of Temperature and Cooling Modes on Yield, Purity and Particle Size Distribution of Dihydroxystearic Acid Crystals. Eur. J. Res. 2009, 33(3), 471-479.
91. Flor, J.; Lima, S. A. M. D.; Davolos, M. R. Effect of Reaction Time on the Particle Size of Zno and Zno:Ce Obtained by a Sol–Gel Method. Surf. Colloid Sci. 2004, 128, 239-243.
92. Lin, P. Y.; Lee, H. L.; Chen, C. W.; Lee, T. Effects of Baffle Configuration and Tank Size on Spherical Agglomerates of Dimethyl Fumarate in a Common Stirred Tank. Int. J. Pharm. 2015, 495(2), 886-894.
93. Uehara-Nagamine, E.; Armenante, P. M. Effect of Process Variables on the Single-Feed Semibatch Precipitation of Barium Sulphate. Chem. Eng. Res. Des. 2001, 79(8), 979-988.
94. Karna, S. K.; Sahai. R. Rrview on Taguchi Method. Int. J. Eng. Sci. 2012, 1, 11-18.
95. Davis, R.; John, P. Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes. In Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes; Valter Silva Ed.; IntechOpen: London, U.K., 2018.
96. Jensen, S. M.; Schaarschmidt, F.; Onofri, A.; Ritz, C. Experimental Design Matters for Statistical Analysis: How to Handle Blocking. Pest Manag. Sci. 2018, 74(3), 523-534.
97. Sanders, D.; Coleman, J. Considerations Associated with Restrictions on Randomization in Industrial Experimentation. Qual. Eng.1999, 12(1), 523-534.
98. Vanaja, K.; Shobha Rani, R. H. Design of Experiments: Concept and Applications of Plackett Burman Design. Clin. Res. Regu. Aff. 2007, 24(1), 57-64.
99. Buragohain, M.; Mahanta, C. A Novel Approach for ANFIS Modelling Based on Full Factorial Design. Appl. Soft Comput. 2008, 8(1), 609-625.
100. ENOS Trial Investigators. Efficacy Of Nitric Oxide, With Or Without Continuing Antihypertensive Treatment, For Management Of High Blood Pressure In Acute Stroke (ENOS): A Partial-Factorial Randomised Controlled Trial. Lancet. 2015, 385(9968), 617-628.
101. I. Khuri, A. I.; Mukhopadhyay, S. Response Surface Methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2(2), 128-149.
102. Fahimitabar, A.; Razavian, S. M. H.; Rezaei, S. A. Application of RSM for Optimization of Glutamic Acid Production by Corynebacterium Glutamicum in Bath Culture. Heliyon 2021, 7(6), e07359.
103. Alharbi, N. S.; Kadaikunnan, S. Khaled, J. M.; Almanaa, T. N.; Innasimuthu, G. M.; Rajoo, B.; Alanzi, K. F.; Rajaram, S. K. Optimization of Glutamic Acid Production by Corynebacterium Glutamicum Using Response Surface Methodology. J. King Saud Univ. Sci. 2020, 32(2), 1403-1408.
104. Lindenberg, C.; Mazzotti, M. Effect of Temperature on the Nucleation Kinetics of A L-Glutamic Acid. J. Cryst. Growth 2009, 311(4), 1178-1184.
105. Ni, X.; Liao, A. Effects of Mixing, Seeding, Material of Baffles and final Temperature on Solution Crystallization of L-Glutamic Acid in an Oscillatory Baffled Crystallizer. Chem. Eng. J. 2010, 156(1), 226-233.
106. Su, Q.-L.; Braatz, R. D.; Chiu, M.-S. JITL-Based Concentration Control for Semi-Batch pH-Shift Reactive Crystallization of L-Glutamic Acid. J. Process Control 2014, 24(2), 415-421.
107. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Technol. 2006, 30 (10), 72-93.
108. Held C.; Reschke T.; Müller R.; Kunz W.; Sadowski G. Measuring and modeling aqueous electrolyte/amino-acid solutions with epc-SAFT. J. Chem. Thermodyn. 2014, 68, 1–12.
109. Mccabe, W. L.; Smith, J. C.; Harriott, P. Drying of Solids. In Unit Operations of Chemical Engineering, Seven ed.; Mcgraw-Hill Education (Asia): Singapore, 2005; pp. 796-835.
110. Jiju, A.; and Jiju, A. F. Teaching The Taguchi Method To Industrial Engineers. Work Study. 2001, 50(4), 141-149.
111. Wu, N. C.; Wang, C.M. Powder X-ray Diffraction Analysis. In Materials Analysis, Second ed.; Wang, C.M. Ed.; MRS-T: Taiwan, 2014; pp 43-82.
112. Wang, C. H.; Chen, S. W. Thermal Analysis. In Materials Analysis, Second ed.; Wang, C.M. Ed.; MRS-T: Taiwan, 2014; pp 573-590.
113. Jiang, J. C.; Lin, J. E. Infrared Spectrum Analysis. In Materials Analysis, Second ed.; Wang, C.M. Ed.; MRS-T: Taiwan, 2014; pp 473-493.
114. Griffiths, P. R.; de Hasseth, J. A. Introduction to Vibrational Spectroscopy. In Fourier Transform Infrared Spectrometry, Second ed.; Winerordner, J. D., Ed.; John Wiley & Sons, Inc.: New Jersey, 2007; pp 1-18.
115. Buncel, E.; Stairs, R. A. Physicochemical Foundations. In Solvent Effects In Chemistry, Second ed.; John Wiley & Sons, Inc.: New Jersey, 2015; pp 1−22.
116. Gu, C. H.; Young, Jr V.; Grant, D.J.W. Polymorph Screening: Influence of Solvents on the Rate of Solvent-Mediated Polymorphic Transformation, J. Pharm. Sci. 2001, 90(11), 1878-1890.
117. Quang, K. C.; Giang, D. T.; Huyen, T.T.T.; Tuan N. A. Crystallization of L-Glutamic Acid: Mechanism of Heterogeneous β-Form Nucleation. Int. J. Eng. Sci. 2017, 7(1), 22-27.
118. Cashell, C.; Corcoran, D.; Hodnett, B. K. Control of Polymorphism and Crystal Size of L-Glutamic Acid in the Absence of Additives. J. Cryst. Growth 2004, 273(1-2), 258-265.
119. Hirayama, N.; Shirahata, K.; Ohashi, Y.; Sasada Y. Structure of Α Form of L-Glutamic Acid. α-β Transition. Bull. Chem. Soc. Jpn. 1980, 53(1), 30-35.
120. Marcoin, W.; Duda, H.; Kusz, J.; Bzowski, B.; Warczewski, J. Applied Crystallography Conference, 17th, 1999, 40.
121. Srinivasan, K.; Dhanasekaran, P. Nucleation Control and Crystallization of L-Glutamic Acid Polymorphs by Swift Cooling Process and Their Characterization. J. Cryst. Growth, 2011, 318(1), 1080-1084.
122. Wu, H.; Reeves-McLaren, N.; Jones, S.; Ristic, R. I.; Fairclough, J. P. A.; West, A. R. Phase Transformations of Glutamic Acid and Its Decomposition Products. Cryst. Growth Des. 2010, 10(2), 988-994.
123. Kinoshita, S.; Udaka, S.; Shimamoto, M. Studies on Amino Acid Fermentation. Part I. Production of L-Glutamic Acid by Various Microorganisms. J. Gen. Appl. Microbiol. 1957, 3(3), 193–205.
124. McMurry, J. Biomolecules: Amino Acids, Peptides, and Proteins. In Organic Chemistry, Ninth ed.; Cengage Learning: Boston, MA, USA, 2016; pp. 872-873.
125. Kirk-Othmer. Encyclopedia of Chemical Technology, Fifth ed.; Wiley Blackwell: New York, 2004.
126. Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry, Ninth ed.; Cengage Learning: Boston, MA, USA, 2013.
127. Kitamura, M.; Ishizu, T. Kinetic Effect of L-Phenylalanine on Growth Process of L-Glutamic Acid Polymorph. J. Cryst. Growth, 1998, 192(1–2), 225-235.
128. Kitamura, M.; Funahara, H. Effect of L- and D-Phenylalanine on Crystallization and Transformation of L-Glutamic Acid Polymorphs. J. Chem. Eng. Jpn. 1994, 27(1), 124-126.
129. Glutamic Acid Extraction Method. China Patent 102086159A, Jun, 08, 2011.
130. Tahri, Y.; Gagnière, E.; Chabanon, E.; Bounahmidi, T.; Kožíšek, Z.; Candoni, N.; Veesler, S.; Boukerche, M.; Mangin, D. Multiscale Experimental Study and Modeling of L Glutamic acid Crystallization: Emphasis on a Kinetic Explanation of the Ostwald Rule of Stages. Cryst. Growth Des. 2019, 19(6), 3329-3337.
131. Lee, E. H. A Practical Guide to Pharmaceutical Polymorph Screening & Selection. Asian J. Pharm. Sci. 2014, 9(4), 163-175.
132. Kumar, A.; Bachhawat, A. K. Pyroglutamic Acid: Throwing Light on a Lightly Studied Metabolite. Curr. Sci. 2012, 102(2), 288-297.
133. Beck, R.; Häkkinen, A.; Malthe-Sørenssen, D.; Andreassen, J.-P. The Effect of Crystallizations, Crystal Morphology and Size on Pressure Filtration of L-Glutamic Acid and an Aromatic Amine. Sep. Purif. Technol. 2009, 66(3), 549-558.
134. Colom, X.; Carrillo, F. Crystallinity Changes in Lyocell and Viscose-type Filbres by Caustic Treatment. Eur. Polym. J. 2002, 38(11), 2225-2230.
135. Cay, A.; Gurlek, G.; Oglakcioglu, N. Analysis and Modelling Drying Behavior of Knitted Textile Materials. Dry. Technol. 2017, 35(4), 509-521.
136. Yu, Z.-Q.; Yeoh, A.; Chow, P. S.; Tan, R. B. H. Particle Size Control in Batch Crystallization of Pyrazinamide on Different Scales. Org. Process Res. Dev. 2016, 20(12), 2100–2107.
137. Roelands, C. P. M.; ter Horst, J. H.; Kramer, H. J. M.; Jansens, P. J. Precipitation Mechanism of Stable and Metastable Polymorphs of L-Glutamic Acid. AIChE J. 2007, 53(2), 354-362.
138. León, R. V.; Shoemaker, A. C.; Kacker, R. N. Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi′s Signal-to-Noise Ratios. Technometrics 1987, 29(3), 253-265.
139. Goh, T. N. Perspectives On Statistical Quality Engineering. The TQM Magazine, 1999, 11(6), 461-466.
140. Ross, P. J.; Taguchi, G. Techniques for Quality Engineering. McGrawHill, New York, 1988.
141. Pourbaghi-Masouleh, M.; Asgharzadeh, H. Optimization of Sol-Gel Technique for Coating of Metallic Substrates by Hydroxyapatite Using the Taguchi Method. Mater. Sci.-Pol. 2013, 31, 424-433.
142. Kim, K. D.; Kim, S. H.; Kim, H. T. Applying the Taguchi Method to the Optimization for the Synthesis of TiO2 Nanoparticles by Hydrolysis of TEOT in Micelles. Colloids Surf., A 2005, 254(1-3), 99-105.
143. Chen, W.; Dai, P., Chen, Y.; Chen, D.; Jiang, Z. A Two-Stage Optimization System for the Plastic Injection Molding with Multiple Performance Characteristics. Adv. Mater. Res. 2012, 468-471, 386-390.
144. Lee, M.-J.; Wang, I.-C.; Kim, M.-J.; Kim, P.; Song, K.-H.; Chun, N.-H.; Park, H.-G.; Choi, G.-J. Controlling the Polymorphism of Carbamazepine-Saccharin Co-Crystals Formed During Antisolvent Cocrystallization Using Kinetic Parameters. Korean J. Chem. Eng. 2015, 32, 1910−1195.
145. Teychené, S.; Rodriguez-Ruiz, I.; Ramamoorthy, R.-J. Reactive Crystallization: From Mixing to Control of Kinetics by Additives. Curr. Opin. Colloid Interface Sci. 2020, 46, 1-19.
146. McGinty, J.; Yazdanpanah, N.; Price, C.; Horst, J. H. T.; Sefcik, J. Nucleation and Crystal Growth in Continuous Crystallization. In The Handbook of Continuous Crystallization; Nima Yazdanpanah, N.; Nagy, Z. N. Eds.; Royal Society of Chemistry:London, U.K. 2020; pp. 1-50.
147. Nývlt, J. Kinetics Of Nucleation In Solutions. J. Cryst. Growth 1968, 3-4, 377-383.
148. Zhou, G. X.; Fujiwara, M.; Woo, X. YI, Rusli, E.; Tung, H.-H.; Starbuck, C.; Davidson, O.; Ge, Z.; Braatz, R. D. Direct Design of Pharmaceutical Antisolvent Crystallization through Concentration Control. Cryst. Growth Des. 2006, 6(4), 892–898.
149. Chen, T.-H.; Yeh, K. L.; Chen, C. W.; Lee, H. L.; Hsu, Y. C.; Lee, T. Mixing Effect on Stoichiometric Diversity in Benzoic Acid−Sodium Benzoate Cocrystals. Cryst. Growth Des. 2019, 19(3), 1576–1583.
150. Abraham, F. F. Homogeneous Nucleation Theory; Academic: New York, 1974.
151. Alatalo, H.; Hatakka, H.; Kohonen, J.; Reinikainen, S.-P.; Louhi-kultanen, M. Process Control And Monitoring Of Reactive Crystallization Of L-Glutamic Acid. AIChE J. 2010, 56(8), 2063-2076.
152. Mullin, J. W. Crystallization, Forth ed.; Butterworth Heinemann:  Oxford, UK, 2001.
153. Lee, K.; Lee, J. H.; Yang, D. R.; Mahoney, A. W. Integrated Run-to-run and On-line Model-based Control of Particle Size Distribution for a Semi-batch Precipitation Reactor. Comput. Chem. Eng. 2002, 26(7-8), 1117−1131.
154. Åslund, B. L.; Rasmuson, Å.; Rasmuson, C. Semibatch Reaction Crystallization of Benzoic Acid. AIChE J. 1992, 38(3), 328−342.
155. Yousuf, M.; Frawley, P. J. Experimental Evaluation of Fluid Shear Stress Impact on Secondary Nucleation in a Solution Crystallization of Paracetamol. Cryst. Growth Des. 2018, 18(11), 6843–6852.
指導教授 李度(Tu Lee) 審核日期 2021-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明