博碩士論文 108223009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.217.29.178
姓名 林建翔(Chien-Hsiang Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 不同陰離子之吡嗪電洞傳輸材料應用於反式鈣鈦礦太陽能電池
(Pyrazine-Based Hole Transporting Materials for Inverted Perovskite Solar Cells: The Effects of Different Anions)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 近年來,鈣鈦礦太陽能電池備受矚目,於 2009 至 2020 年間,光電轉換效率從 3.9% 提升至 25.5%,而多數研究團隊都是以中性有機分子的電洞傳輸材料作為發表,離子型化合物較少被探討及研究,所以本篇以 pyrazine 為中心結構,外接四個 triphenylamine 合成出 pyrazinemethoxyltriphenylamine (PMO),並將 PMO 中心的氮進行甲基化,合成出 PMO-CH3SO4,再與不同的飽和陰離子水溶液進行離子置換,分別形成最終分子 PMO-PF6, PMO-I 及 PMO-SCN。此系列化合物具有合適的highest occupied molecular orbital (HOMO)、熱穩定性及良好的溶解度,除了這些優勢之外,離子型分子可以彌補鈣鈦礦層缺陷,使晶體生成更順利且平整,進而更有利於電荷的傳遞,預期本研究之離子型化合物的光電轉換效率將優於 PMO 並運用於電洞傳輸材料。
摘要(英) In recent years, the photoelectric conversion efficiency (PCE) of perovskite solar cells has increased from 3.9% to 25.5%. Compared with ionic compounds, most research groups used neutral organic molecules as hole transport materials (HTM) for publication. Therefore, in this study, pyrazine was used as the central structure, and four triphenylamines were connected to synthesize PMO. After the central nitrogen of PMO was methylated, the compound PMO-CH3SO4 was synthesized, which was replaced with different saturated anion aqueous solutions to form PMO-PF6, PMO-I and PMO-SCN. This series of compounds has a suitable highest occupied molecular orbital (HOMO), thermal stability and good solubility. In addition to these advantages, ionic molecules can also compensate for the defects of the perovskite layer, making the formation of crystals smoother, which is more conducive to charge transfer. It is expected that the photoelectric conversion efficiency of the ionic compound in this study will be better than that of PMO, and it will be used as a hole transport material.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 電洞傳輸材料
關鍵字(英)
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 viii
一、緒論 1
1-1 前言 1
1-2 太陽能電池發展 2
1-3 鈣鈦礦太陽能電池 2
1-4 電動傳輸材料文獻回顧 11
二、結構設計概念及動機 15
三、合成與討論 20
3-1 合成策略 20
3-2 理論計算 22
3-3 光物理性質 27
3-4 電化學性質 31
3-5 熱穩定性 34
四、結論與未來展望 34
五、實驗合成與光譜數據 36
5-1 實驗藥品 36
5-2 實驗儀器 36
5-3 實驗合成步驟 39
參考文獻 46
附錄 50
參考文獻 1. Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G., High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867-7918.
2. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
3. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
4. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion Efficiency. Energy Environ. Sci. 2015, 8, 1602-1608.
5. Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G., Recent Progress in Electron Transport Layers for Efficient Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 3970-3990.
6. Said, A. A.; Xie, J.; Zhang, Q., Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small 2019, 15, 1900854.
7. Mohamad Noh, M. F.; Teh, C. H.; Daik, R.; Lim, E. L.; Yap, C. C.; Ibrahim, M. A.; Ahmad Ludin, N.; Mohd Yusoff, A. R. b.; Jang, J.; Mat Teridi, M. A., The Architecture of the Electron Transport Layer for a Perovskite Solar Cell. J. Mater. Chem. C 2018, 6, 682-712.
8. (a) Chen, J.; Kim, S.-G.; Ren, X.; Jung, H. S.; Park, N.-G., Effect of Bidentate and Tridentate Additives on the Photovoltaic Performance and Stability of Perovskite Solar Cells. J. Mater. Chem. A 2019, 7, 4977-4987; (b) Han, T.-H.; Lee, J.-W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.-J.; Bae, S.-H.; Yuan, Y.; Lee, H. M.; Huang, Y.; Yang, Y., Perovskite-Polymer Composite Cross-Linker Approach for Highly-Stable and Efficient Perovskite Solar Cells. Nat. Commun. 2019, 10, 520.
9. (a) Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung, H. S., Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids. ACS Energy Lett. 2019, 4, 1845-1851; (b) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M., Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206; (c) Hu, H.; Ren, Z.; Fong, P. W. K.; Qin, M.; Liu, D.; Lei, D.; Lu, X.; Li, G., Room-Temperature Meniscus Coating of >20% Perovskite Solar Cells: A Film Formation Mechanism Investigation. Adv. Funct. Mater. 2019, 29, 1900092.
10. (a) Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin, H.-W.; Il Seok, S.; Lee, J.; Seo, J., A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Nat. Energy 2018, 3, 682-689; (b) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234.
11. Kung, P.-K.; Li, M.-H.; Lin, P.-Y.; Chiang, Y.-H.; Chan, C.-R.; Guo, T.-F.; Chen, P., A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Adv. Mater. Interfaces 2018, 5, 1800882.
12. Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W., Strategies of Modifying Spiro-OMeTAD Materials for Perovskite Solar Cells: A Review. J. Mater. Chem. A 2021, 9, 4589-4625.
13. Wang, K.-C.; Shen, P.-S.; Li, M.-H.; Chen, S.; Lin, M.-W.; Chen, P.; Guo, T.-F., Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 11851-11858.
14. Qi, B.; Wang, J., Open-Circuit Voltage in Organic Solar Cells. J. Mater. Chem. 2012, 22, 24315-24325.
15. Wright, M.; Uddin, A., Organic-Inorganic Hybrid Solar Cells: A Comparative Review. Sol. Energy Mater. Sol. Cells 2012, 107, 87-111.
16. Urieta-Mora, J.; Garcia-Benito, I.; Zimmermann, I.; Arago, J.; Molina-Ontoria, A.; Orti, E.; Martin, N.; Nazeeruddin, M. K., Tetrasubstituted Thieno[3,2-b]thiophenes as Hole-Transporting Materials for Perovskite Solar Cells. J. Org. Chem. 2020, 85, 224-233.
17. Liang, L.; Wang, Y.; Zhang, Z.; Wang, J.; Feng, K.; Ma, S.; Li, Y.; Guo, X.; Gao, P., Core Fusion Engineering of Hole-Transporting Materials for Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1250-1258.
18. Fuentes Pineda, R.; Zems, Y.; Troughton, J.; Niazi, M. R.; Perepichka, D. F.; Watson, T.; Robertson, N., Star-Shaped Triarylamine-Based Hole-Transport Materials in Perovskite Solar Cells. Sustain. Energy Fuels 2020, 4, 779-787.
19. Truong, M. A.; Lee, H.; Shimazaki, A.; Mishima, R.; Hino, M.; Yamamoto, K.; Otsuka, K.; Handa, T.; Kanemitsu, Y.; Murdey, R.; Wakamiya, A., Near-Ultraviolet Transparent Organic Hole-Transporting Materials Containing Partially Oxygen-Bridged Triphenylamine Skeletons for Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1484-1495.
20. Fu, Y.; Li, Y.; Zeng, Q.; Wu, H.; Wang, L.; Tang, H.; Xing, G.; Cao, D., Influence of Donor Units on Spiro[fluorene-9,9′-xanthene]-Based Dopant-Free Hole Transporting Materials for Perovskite Solar Cells. Sol. Energy 2021, 216, 180-187.
21. Chang, Y.-M.; Li, C.-W.; Lu, Y.-L.; Wu, M.-S.; Li, H.; Lin, Y.-S.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J., Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiOx-Based Planar Perovskite Solar Cells with High Efficiency of over 20%. ACS Appl. Mater. Interfaces 2021, 13, 6450-6460.
22. Wu, F.; Shan, Y.; Qiao, J.; Zhong, C.; Wang, R.; Song, Q.; Zhu, L., Replacement of Biphenyl by Bipyridine Enabling Powerful Hole Transport Materials for Efficient Perovskite Solar Cells. ChemSusChem 2017, 10, 3833-3838.
23. Reddy, S. S.; Arivunithi, V. M.; Sree, V. G.; Kwon, H.; Park, J.; Kang, Y.-C.; Zhu, H.; Noh, Y.-Y.; Jin, S.-H., Lewis Acid-Base Adduct-Type Organic Hole Transport Material for High Performance and Air-Stable Perovskite Solar Cells. Nano Energy 2019, 58, 284-292.
24. Huang, P.; Manju; Kazim, S.; Sivakumar, G.; Salado, M.; Misra, R.; Ahmad, S., Pyridine Bridging Diphenylamine-Carbazole with Linking Topology as Rational Hole Transporter for Perovskite Solar Cells Fabrication. ACS Appl. Mater. Interfaces 2020, 12, 22881-22890.
25. Duan, L.; Chen, Y.; Jia, J.; Zong, X.; Sun, Z.; Wu, Q.; Xue, S., Dopant-Free Hole-Transport Materials Based on 2,4,6-Triarylpyridine for Inverted Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 1672-1683.
26. Ma, S.; Liu, X.; Zhang, X.; Ghadari, R.; Ding, Y.; Cai, M.; Dai, S., Introducing Ammonium Salt into Hole Transporting Materials for Perovskite Solar Cells. Chem. Commun. (Cambridge, U. K.) 2020, 56, 14471-14474.
27. Sonigara, K. K.; Shao, Z.; Prasad, J.; Machhi, H. K.; Cui, G.; Pang, S.; Soni, S. S., Organic Ionic Plastic Crystals as Hole Transporting Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 2001460.
28. Du, Y.; Wu, J.; Zhang, X.; Zhu, Q.; Zhang, M.; Liu, X.; Zou, Y.; Wang, S.; Sun, W., Surface Passivation Using Pyridinium Iodide for Highly Efficient Planar Perovskite Solar Cells. J. Energy Chem. 2021, 52, 84-91.
29. Mahadik, S. S.; Garud, D. R.; Ware, A. P.; Pingale, S. S.; Kamble, R. M., Design, Synthesis and Opto-electrochemical Properties of Novel Donor–Acceptor Based 2,3-di(hetero-2-yl)pyrido[2,3-b]pyrazine amine derivatives as Blue-Orange Fluorescent Materials. Dyes Pigm. 2021, 184, 108742.
30. Agarwala, P.; Kabra, D., A Review on Triphenylamine (TPA) Based Organic Hole Transport Materials (HTMs) for Dye Sensitized Solar Cells (DSSCs) and Perovskite Solar Cells (PSCs): Evolution and Molecular Engineering. J. Mater. Chem. A 2017, 5, 1348-1373.
31. Chen, Y.; Zhao, J.; Guo, H.; Xie, L., Geometry Relaxation-Induced Large Stokes Shift in Red-Emitting Borondipyrromethenes (BODIPY) and Applications in Fluorescent Thiol Probes. J. Org. Chem. 2012, 77, 2192-2206.
32. (a) Li, H.; Fu, K.; Hagfeldt, A.; Graetzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C., A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells. Angew. Chem., Int. Ed. 2014, 53, 4085-4088; (b) Pham, H. D.; Do, T. T.; Kim, J.; Charbonneau, C.; Manzhos, S.; Feron, K.; Tsoi, W. C.; Durrant, J. R.; Jain, S. M.; Sonar, P., Molecular Engineering Using an Anthanthrone Dye for Low-Cost Hole Transport Materials: A Strategy for Dopant-Free, High-Efficiency, and Stable Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1703007; (c) Chi, W.-J.; Li, Z.-S., The Theoretical Investigation on the 4-(4-phenyl-4-α-naphthylbutadieny)-triphenylamine Derivatives as Hole Transporting Materials for Perovskite-Type Solar Cells. Phys. Chem. Chem. Phys. 2015, 17, 5991-5998; (d) Chi, W.-J.; Sun, P.-P.; Li, Z.-S., A Strategy to Improve the Efficiency of Hole Transporting Materials: Introduction of a Highly Symmetrical Core. Nanoscale 2016, 8, 17752-17756.
33. Krishna, A.; Grimsdale, A. C., Hole Transporting Materials for Mesoscopic Perovskite Solar Cells – Towards a Rational Design? J. Mater. Chem. A 2017, 5, 16446-16466.
34. Wu, J.-T.; Liou, G.-S., A Novel Panchromatic Shutter based on an Ambipolar Electrochromic System without Supporting Electrolyte. Chem. Commun. (Cambridge, U. K.) 2018, 54, 2619-2622.
35. Tian, X.; Qian, F.; Wu, M.; Liang, X.; Zhang, F.; Li, D.; Guo, K.; Liu, Z.; Li, J., Synthesis and Properties of Triphenylamine Functionalized Tetrathiafulvalene. Tetrahedron Lett. 2020, 61, 151949.
36. Li, G.; Yang, S.; Liu, T.; Li, J.; Yang, W.; Luo, Z.; Yan, C.; Li, D.; Wang, X.; Cui, G.; Yang, T.; Xu, L.; Zhan, S.-Z.; Huo, L.; Yan, H.; Tang, B., Functionalizing Tetraphenylpyrazine with Perylene Diimides (PDIs) as High-Performance Nonfullerene Acceptors. J. Mater. Chem. C 2019, 7, 14563-14570.
指導教授 李文仁 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明