博碩士論文 107223032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.133.150.67
姓名 莊宜銓(Yi-Chuan Zhuang)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Water-Mediated, Metal-Catalyzed, and Base-Induced (WMMCBI) Mechanism of a novel Tertiary -ketol Rearrangement in Ketol–Acid Reductoisomerase)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 支鏈型胺基酸合成路徑 (branched chain amino acids biosynthetic pathway)中的第二個酵素—酮醇酸還原異構酶 (ketol-acid reductoisomerase, KARI),可催化2-羥-2-甲基-3-氧代丁酸 (2-乙醯-2-羥基丁酸) 轉換為2,3-二羥-3-甲基丁酸 (2,3-二羥-3-甲基戊酸)。由於支鏈型胺基酸合成路徑只存在於細菌、植物與菌類中,但不存在於動物中,因此可以做為設計新世代抗生素的研發目標。然而,酮醇酸還原異構酶的反應機制仍未完全清楚;尤其,2-羥-2-甲基-3-氧代丁酸中三級羥基的去質子化反應。在此,我們利用 molecular dynamic flexible fitting技術與低溫電子顯微鏡 (cryo-EM) 影像來建立Sso-KARI 蛋白的三維水溶液結構。根據此蛋白質三維結構,我們利用量子力學/分子力學的分子動態模擬結合傘狀抽樣(QM/MM MD/US) 計算出羥基酮重排反應的自由能曲線,對此酵素的催化機制進行研究。我們發現,以水分子為媒介,金屬催化,鹼誘導(WMMCBI)機制有利於2-羥-2-甲基-3-氧代丁酸中三級羥基的去質子化反應及接下來的質子傳導。在此機制中包括基質上三級羥基、鎂上的配位水以及谷氨酸233。此去質子化反應只需4.87千卡/莫耳的活化能,其反應機制涉及到以下兩步驟:谷氨酸233作為鹼抽取鎂上配位水的質子並生成氫氧根離子中間物;以及氫氧根離子中間物做為強鹼對基質的三級羥基進行去質子化反應。相較而言,藉由谷氨酸233作為鹼對基質進行直接去質子化是動力學禁止的反應。WMMCBI機制研究揭示了三級羥基的去質子化反應並提供設計抗生素的線索。
摘要(英) The ketol-acid reductoisomerase (KARI) catalyzes conversion of (S)-2-acetolactate or (S)-2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-alkylbutyrate is the second step in the biosynthesis of branched chain amino acids (BCAA). As BCAA biosynthetic pathway is only present in bacteria, plants, and fungi; but absent in animals, thus it is an excellent target for the development of new-generation antibiotics and herbicides. However, the KARI reaction mechanism is yet to be fully solved; in particular, the source of “strong” base needed to first deprotonate the tertiary hydroxyl group of (S)-2-acetolactate is remained unknown. Here, we first optimized the 3D solution structure of archaea ketol-acid reductoisomerase (Sso-KARI) from Sulfolobus solfataricus (Sso) from the cryo-EM maps by iterative molecular dynamic flexible fitting-Rosetta techniques. On the basis of the structure of Sso-KARI:2Mg2+:NADH:(S)-2-acetolactate complex, we decipher the catalytic mechanism of KARI reaction with hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations in conjunction with umbrella sampling (US). We have determined the entire free energy profile of the -ketol rearrangement and provided detailed mechanistic insights. Our results show that the Water-Mediated, Metal-Catalyzed, and Base-Induced (WMMCBI) mechanism is preferred for the deprotonation of tertiary hydroxyl group of (S)-2-acetolactate and the following proton shuttle. In the WMMCBI mechanism, water coordinated on Mg2+, hydroxyl group of substrate, and Glu233 forms a proton wire route having deprotonation activation energy of 4.87 kcal/mol only. The WMMCBI mechanism has two steps involving am hydroxide intermediate: first, the Glu233 serves as a general base to cleavage the Mg2+bound water and a hydroxide intermediate coordinated on Mg2+ is formed. Second, the hydroxide acts as a strong base to deprotonate the ternary hydroxyl group of substrate. In contrast, direct deprotonation of substrate by Glu233 is kinetically forbidden. WMMCBI mechanism opens a novel way for the design of catalysts for the tertiary -ketol rearrangement and provides clues for the development of new-generation antibiotics.
關鍵字(中) ★ 酮醇酸還原異構 關鍵字(英) ★ KARI
★ QM/MM MD
★ Umbrella Sampling
論文目次 摘要 i
Abstract ii
Contents iv
List of Figures v
Chapter 1: Introduction 1
Chapter 2: METHODOLOGY 8
2.1 Construction of Sso-KARI:2Mg2+CPDNADH Solution Structure from Cryo-EM Map 8
2.2 Construction the initial Structure of Sso-KARI:2Mg2+:NADH:(S)-2-acetolactate Dimer (Michaelis Complex, ES) 12
2.3 QM/MM MD Simulations and US Methods 15
Chapter 3: Results and Discussion 17
3.1 Free Energy Profile of ES Complexes 17
3.2 Deprotonation of (S)-2-acetolactate 19
3.3 Proton Shuttle Mechanisms of ESB Complex 28
3.4 Mechanism of 1,2 Methyl Group Migration 30
Chapter 4: Conclusions and Summary 33
References 36
Supporting Information 41
參考文獻 1. Us Cdc. Antibiotic Resistance Threats in the United States. http://www.cdc.gov/drugresistance/threat-report-2013/.
2. Garcia, M. D.; Nouwens, A.; Lonhienne, T. G.; Guddat, L. W., Comprehensive Understanding of Acetohydroxyacid Synthase Inhibition by Different Herbicide Families. Proceedings of the National Academy of Sciences 2017, 114, E1091-E1100.
3. You, L.; Ajit, K.; Jie, W. S.; P., M. R.; J., W. S.; Bostjan, K.; Volker, S.; A., S. M.; Gerhard, S.; W., G. L., Crystal Structure of Mycobacterium Tuberculosis Ketol‐Acid Reductoisomerase at 1.0 Õ Resolution – a Potential Target for Anti‐Tuberculosis Drug Discovery. The FEBS Journal 2016, 283, 1184-1196.
4. Dumas, R.; Cornillon-Bertrand, C.; Guigue-Talet, P.; Genix, P.; Douce, R.; Job, D., Interactions of Plant Acetohydroxy Acid Isomeroreductase with Reaction Intermediate Analogues: Correlation of the Slow, Competitive, Inhibition Kinetics of Enzyme Activity and Herbicidal Effects. The Biochemical journal 1994, 301 ( Pt 3), 813-20.
5. Liu, X.-H.; Chen, P.-Q.; Wang, B.-L.; Dong, W.-L.; Li, Y.-H.; Xie, X.-Q.; Li, Z.-M., High Throughput Receptor-Based Virtual Screening under Zinc Database, Synthesis, and Biological Evaluation of Ketol-Acid Reductoisomerase Inhibitors. Chemical Biology & Drug Design 2010, 75, 228-232.
6. Patel, K. M.; Teran, D.; Zheng, S.; Kandale, A.; Garcia, M.; Lv, Y.; Schembri, M. A.; McGeary, R. P.; Schenk, G.; Guddat, L. W., Crystal Structures of Staphylococcus Aureus Ketol-Acid Reductoisomerase in Complex with Two Transition State Analogues That Have Biocidal Activity. Chemistry 2017, 23, 18289-18295.
7. Bastian, S.; Liu, X.; Meyerowitz, J. T.; Snow, C. D.; Chen, M. M. Y.; Arnold, F. H., Engineered Ketol-Acid Reductoisomerase and Alcohol Dehydrogenase Enable Anaerobic 2-Methylpropan-1-Ol Production at Theoretical Yield in Escherichia Coli. Metab Eng 2011, 13, 345-352.
8. Atsumi, S.; Hanai, T.; Liao, J. C., Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels. Nature 2008, 451, 86.
9. Yamamoto, K.; Tsuchisaka, A.; Yukawa, H., Branched-Chain Amino Acids. In Amino Acid Fermentation, Yokota, A.; Ikeda, M., Eds. Springer Japan: Tokyo, 2017; pp 103-128.
10. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Lin, K.-F.; Huang, C.-H.; Hsieh, D.-L.; Ko, T.-P.; Tsai, M.-D., Use of Cryo-Em to Uncover Structural Bases of Ph Effect and Cofactor Bispecificity of Ketol-Acid Reductoisomerase. Journal of the American Chemical Society 2019, 141, 6136-6140.
11. Armstrong, F. B.; Hedgecock, C. J. R.; Reary, J. B.; Whitehouse, D.; Crout, D. H. G., Stereochemistry of the Reductoisomerase and Αβ-Dihydroxyacid Dehydratase-Catalysed Steps in Valine and Isoleucine Biosynthesis. Observation of a Novel Tertiary Ketol Rearrangement. J. Chem. Soc., Chem. Commun. 1974, 351-352.
12. Dumas, R.; Job, D.; Ortholand, J. Y.; Emeric, G.; Greiner, A.; Douce, R., Isolation and Kinetic Properties of Acetohydroxy Acid Isomeroreductase from Spinach (Spinacia Oleracea) Chloroplasts Overexpressed in Escherichia Coli. The Biochemical journal 1992, 288 ( Pt 3), 865-74.
13. Arfin, S. M.; Umbarger, H. E., Purification and Properties of the Acetohydroxy Acid Isomeroreductase of Salmonella Typhimurium. J Biol Chem 1969, 244, 1118-27.
14. Chunduru, S. K.; Mrachko, G. T.; Calvo, K. C., Mechanism of Ketol Acid Reductoisomerase. Steady-State Analysis and Metal Ion Requirement. Biochemistry 1989, 28, 486-493.
15. Thomazeau, K.; Dumas, R.; Halgand, F.; Forest, E.; Douce, R.; Biou, V., Structure of Spinach Acetohydroxyacid Isomeroreductase Complexed with Its Reaction Product Dihydroxymethylvalerate, Manganese and (Phospho)-Adp-Ribose. Acta Crystallographica Section D 2000, 56, 389-397.
16. Karino, M.; Kubouchi, D.; Hamaoka, K.; Umeyama, S.; Yamataka, H., Mechanism of Α-Ketol-Type Rearrangement of Benzoin Derivatives under Basic Conditions. The Journal of Organic Chemistry 2013, 78, 7194-7198.
17. Arigoni, D.; Giner, J. L.; Sagner, S.; Wungsintaweekul, J.; Zenk, M. H.; Kis, K.; Bacher, A.; Eisenreich, W., Stereochemical Course of the Reduction Step in the Formation of 2-C-Methylerythritol from the Terpene Precursor 1-Deoxyxylulose in Higher Plants. Chem Commun 1999, 1127-1128.
18. Zhou, J.; Wu, R.; Wang, B.; Cao, Z.; Yan, H.; Mo, Y., Proton-Shuttle-Assisted Heterolytic Carbon–Carbon Bond Cleavage and Formation. ACS Catalysis 2015, 5, 2805-2813.
19. Proteau, P. J., 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase: An Overview. Bioorg Chem 2004, 32, 483-93.
20. Mrachko, G. T.; Chunduru, S. K.; Calvo, K. C., The Ph Dependence of the Kinetic Parameters of Ketol Acid Reductoisomerase Indicates a Proton Shuttle Mechanism for Alkyl Migration. Archives of Biochemistry and Biophysics 1992, 294, 446-453.
21. Sonya, T.; M., P. M.; Volker, S.; A., L. J.; W., G. L.; Gerhard, S., Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol–Acid Reductoisomerase. Chemistry – A European Journal 2016, 22, 7427-7436.
22. Proust-De Martin, F.; Dumas, R.; Field, M. J., A Hybrid-Potential Free-Energy Study of the Isomerization Step of the Acetohydroxy Acid Isomeroreductase Reaction. Journal of the American Chemical Society 2000, 122, 7688-7697.
23. Rajiv, T.; Yu‐Ting, L.; W., G. L.; G., D. R., Probing the Mechanism of the Bifunctional Enzyme Ketol‐Acid Reductoisomerase by Site‐Directed Mutagenesis of the Active Site. The FEBS Journal 2005, 272, 593-602.
24. Brinkmann-Chen, S.; Flock, T.; Cahn, J. K.; Snow, C. D.; Brustad, E. M.; McIntosh, J. A.; Meinhold, P.; Zhang, L.; Arnold, F. H., General Approach to Reversing Ketol-Acid Reductoisomerase Cofactor Dependence from Nadph to Nadh. Proceedings of the National Academy of Sciences of the United States of America 2013, 110, 10946-51.
25. Biou, V.; Dumas, R.; Cohen-Addad, C.; Douce, R.; Job, D.; Pebay-Peyroula, E., The Crystal Structure of Plant Acetohydroxy Acid Isomeroreductase Complexed with Nadph, Two Magnesium Ions and a Herbicidal Transition State Analog Determined at 1.65 a Resolution. EMBO J 1997, 16, 3405-15.
26. Leung, E. W. W.; Guddat, L. W., Conformational Changes in a Plant Ketol-Acid Reductoisomerase Upon Mg2+ and Nadph Binding as Revealed by Two Crystal Structures. Journal of Molecular Biology 2009, 389, 167-182.
27. Wong, S. H.; Lonhienne, T. G. A.; Winzor, D. J.; Schenk, G.; Guddat, L. W., Bacterial and Plant Ketol-Acid Reductoisomerases Have Different Mechanisms of Induced Fit During the Catalytic Cycle. Journal of Molecular Biology 2012, 424, 168-179.
28. Chen, C. Y.; Chang, Y. C.; Lin, B. L.; Huang, C. H.; Tsai, M. D., Temperature-Resolved Cryo-Em Uncovers Structural Bases of Temperature-Dependent Enzyme Functions. J Am Chem Soc 2019, 141, 19983-19987.
29. Senn, H. M.; Thiel, W., Qm/Mm Studies of Enzymes. Current Opinion in Chemical Biology 2007, 11, 182-187.
30. Lindert, S.; McCammon, J. A., Improved Cryoem-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction. Journal of Chemical Theory and Computation 2015, 11, 1337-1346.
31. Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H.; Olsson, M. H. M., Electrostatic Basis for Enzyme Catalysis. Chemical Reviews 2006, 106, 3210-3235.
32. Gao, J.; Ma, S.; Major, D. T.; Nam, K.; Pu, J.; Truhlar, D. G., Mechanisms and Free Energies of Enzymatic Reactions. Chemical Reviews 2006, 106, 3188-3209.
33. Benkovic, S. J.; Hammes-Schiffer, S., A Perspective on Enzyme Catalysis. Science 2003, 301, 1196.
34. Vanommeslaeghe, K.; D Mackerell, A., Automation of the Charmm General Force Field (Cgenff) I: Bond Perception and Atom Typing, 2012; Vol. 52.
35. Vanommeslaeghe, K.; Raman, P.; D Mackerell, A., Automation of the Charmm General Force Field (Cgenff) Ii: Assignment of Bonded Parameters and Partial Atomic Charges, 2012; Vol. 52.
36. Chan, K.-Y.; Gumbart, J.; McGreevy, R.; Watermeyer, Jean M.; Sewell, B. T.; Schulten, K., Symmetry-Restrained Flexible Fitting for Symmetric Em Maps. Structure 2011, 19, 1211-1218.
37. Trabuco, L. G.; Villa, E.; Schreiner, E.; Harrison, C. B.; Schulten, K., Molecular Dynamics Flexible Fitting: A Practical Guide to Combine Cryo-Electron Microscopy and X-Ray Crystallography. Methods (San Diego, Calif.) 2009, 49, 174-180.
38. Gordon, J. C.; Myers, J. B.; Folta, T.; Shoja, V.; Heath, L. S.; Onufriev, A., H++: A Server for Estimating Pkas and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res 2005, 33, W368-71.
39. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. The Journal of Chemical Physics 1995, 103, 4613-4621.
40. Becke, A. D., Density‐Functional Thermochemistry. Iii. The Role of Exact Exchange. The Journal of Chemical Physics 1993, 98, 5648-5652.
41. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B 1988, 37, 785-789.
42. Petersson, G. A.; Al‐Laham, M. A., A Complete Basis Set Model Chemistry. Ii. Open‐Shell Systems and the Total Energies of the First‐Row Atoms. The Journal of Chemical Physics 1991, 94, 6081-6090.
43. Neese, F., The Orca Program System. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 73-78.
44. Neese, F., Software Update: The Orca Program System, Version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, e1327.
45. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D., Optimization of the Additive Charmm All-Atom Protein Force Field Targeting Improved Sampling of the Backbone Φ, Ψ and Side-Chain Χ(1) and Χ(2) Dihedral Angles. Journal of chemical theory and computation 2012, 8, 3257-3273.
46. Phillips James, C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel Robert, D.; Kalé, L.; Schulten, K., Scalable Molecular Dynamics with Namd. Journal of Computational Chemistry 2005, 26, 1781-1802.
47. Torrie, G. M.; Valleau, J. P., Monte Carlo Free Energy Estimates Using Non-Boltzmann Sampling: Application to the Sub-Critical Lennard-Jones Fluid. Chemical Physics Letters 1974, 28, 578-581.
48. Torrie, G. M.; Valleau, J. P., Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. Journal of Computational Physics 1977, 23, 187-199.
49. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional Free-Energy Calculations Using the Weighted Histogram Analysis Method. Journal of Computational Chemistry 1995, 16, 1339-1350.
50. Grigorenko, B.; Polyakov, I.; Nemukhin, A., Mechanisms of Atp to Camp Conversion Catalyzed by the Mammalian Adenylyl Cyclase: A Role of Magnesium Coordination Shells and Proton Wires. J Phys Chem B 2020, 124, 451-460.
51. Wilson, K. A.; Fernandes, P. A.; Ramos, M. J.; Wetmore, S. D., Exploring the Identity of the General Base for a DNA Polymerase Catalyzed Reaction Using Qm/Mm: The Case Study of Human Translesion Synthesis Polymerase Η. ACS Catalysis 2019, 9, 2543-2551.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2021-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明