博碩士論文 108821015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:13.59.38.110
姓名 陳怡仁(I-Jen Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥啟動子在基因轉殖的表現行為分析
(Exploration of Arabidopsis promoters for stable gene expression)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 科學家利用基因工程將植物基因進行改造或在植物中表達外源基因,這些改造過的植物稱為基因轉殖植物,基因轉殖植物有許多應用潛力,例如研究有用基因功能、增強植物對極端氣候的抵抗力、增加營養價值或用於生產有用的化合物等。這些基因轉殖植物通常透過所選的啟動子控制內源或外源基因的表達,花椰菜嵌紋病毒35S就是常用的啟動子之一。然而,外源性的35S啟動子所驅動的基因在基因轉殖植物生長、繁衍數個世代後,往往會發生基因靜默的現象,導致基因無法表現,這大大地阻礙了基因轉殖植物在應用上的穩定性,因此急需尋找到可以替代35S的穩定啟動子。為此,我們選擇5個內源性啟動子進行基因轉殖阿拉伯芥的建構,並使用阿拉伯芥的第2代至第5代基因轉殖植物來進行實驗測試所選定啟動子的強度和穩定性。我們的結果顯示: AT4G05320 (UBQ10)、AT5G60390 (EF1α)、AT4G31700 (RPS6a) 和 AT1G13320 (PP2A)四個啟動子在各個組織均可表達,受這些啟動子所驅動的eGFP表現基因在第二代至第五代的轉植株中也可以穩定表達。其中,EF1α和UBQ10啟動子的活性強度與35S相似,是替代35S的最佳候選內源啟動子。另一方面,RPS6a和PP2A啟動子則是具有中度與低度活性,這些具體成果可以提供未來建構基因轉殖植物時所需啟動子的多重選擇。出乎意料的是,我們所選的啟動子之一AT1G13440 (GAPC2)驅動的表達基因在基因轉殖植物繁殖幾代時也出現基因靜默現象。這表示利用內源性基因本身的啟動子和外源性啟動子(如35S)都可能在基因轉殖植物中引發基因靜默。總結而言,我們的研究提供未來應用於基因轉殖植物時,具有表達穩定性和廣泛活性的植物啟動子替代選擇。
摘要(英) Plants can be genetically modified (termed transgenic plants) to meet special needs, such as increased resistance to extreme weather, increased nutritious values, or the production of the useful compounds. These often involve the expression of endogenous or exogenous genes under the control of chosen promoters. Cauliflower mosaic virus (CaMV) 35S is one of the promoters commonly used. However, genes driven by the foreign 35S promoter often suffer from gene silencing after the transgenic plants grow for a few generations, greatly hampers the stable application of transgenic plants produced. Therefore, there are urgent needs of identifying stable promoters that can replace 35S. For this purpose, we selected and experimentally tested the strength and stability of 5 endogenous promoters in Arabidopsis in 2nd (T2) to 5th (T5) generations of transgenic plants. Our results revealed that promoters AT4G05320 (UBQ10), AT5G60390 (EF1α), AT4G31700 (RPS6a), and AT1G13320 (PP2A) have ubiquitous activities and can drive stable expression of the reporter gene eGFP in T2 to T5 generations of the transgenic lines. Among them, promoter strength of EF1α and UBQ10 is similar to that of 35S thus are optimal candidates to replace 35S. RPS6a, and PP2A promoters, on the other hand, have intermediate to low activities, allowing for versatile choices in expressing transgenes of interests. Unexpectedly, the reporter gene driven by one of the promoters selected, AT1G13440 (GAPC2), also exhibited gene silencing behaviors when transgenic plants were propagated for several generations. This indicated that both origin endogenous (which construct from endogenous promoters) and heterologous (such as 35S) promoters can elicit gene silencing in transgenic plants. In conclusion, our study revealed alternative choices of plant promoters with expression stability and wide-range of activities for generating transgenic plants.
關鍵字(中) ★ 阿拉伯芥
★ 啟動子
★ 基因轉殖植物
★ 基因靜默
關鍵字(英) ★ Arabidopsis
★ promoter
★ transgenic plants
★ gene silence
論文目次 中文摘要 i
Abstract iii
致謝 v
Table of Contents vii
List of Figures ix
List of Tables xi
List of Appendices xii
Introduction 1
Methods and Materials 6
1. Selection of origin endogenous promoters 6
2. Constructs used in this study 6
3. Plant materials and growth conditions 7
4. Protein extraction 8
5. SDS-PAGE and immunoblot 9
6. GUS staining 9
Results and Discussion 11
1. Criteria used to select promoters to be investigated 11
2. 35S promoter suffers from gene silencing in transgenic plants after propagating for several generations 13
3. UBQ10, EF1α, RPS6a and PP2A promoter activities are stable in several generations of transgenic plants 13
4. Gene silencing occurs for endogenous origin promoter GAPC2 14
5. Distinct strength and expression behaviors of endogenous origin promoters 15
6. 35S, EF1α, RPS6a and GAPC2 promoters have ubiquitous activities 16
7. PP2A promoter has relatively higher activities in anthers of Arabidopsis flowers 18
Conclusion and Future Perspective 19
References 22
Figures 24
Tables 40
Appendices 41
參考文獻 1. Pareek, A., et al., An Overview of Signaling Regulons During Cold Stress Tolerance in Plants. Curr Genomics, 2017. 18(6): p. 498-511.
2. Castiglioni, P., et al., Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol, 2008. 147(2): p. 446-55.
3. Grover, A., et al., Generating high temperature tolerant transgenic plants: Achievements and challenges. Plant Sci, 2013. 205-206: p. 38-47.
4. Ye, X., et al., Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000. 287(5451): p. 303-5.
5. Azevedo, R.A. and P.J. Lea, Lysine metabolism in higher plants. Amino Acids, 2001. 20(3): p. 261-79.
6. McPherson, S.A., et al., Characterization of the Coleopteran–Specific Protein Gene of Bacillus thuringiensis Var. tenebrionis. Bio/Technology, 1988. 6(1): p. 61-66.
7. Kumar, K., et al., Genetically modified crops: current status and future prospects. Planta, 2020. 251(4): p. 91.
8. Shim, B.S., et al., Plant factory: new resource for the productivity and diversity of human and veterinary vaccines. Clin Exp Vaccine Res, 2019. 8(2): p. 136-139.
9. Matsunaga, W., et al., Transcriptional silencing of 35S driven-transgene is differentially determined depending on promoter methylation heterogeneity at specific cytosines in both plus- and minus-sense strands. BMC Plant Biol, 2019. 19(1): p. 24.
10. Přibylová, A., et al., Detailed insight into the dynamics of the initial phases of de novo RNA-directed DNA methylation in plant cells. Epigenetics Chromatin, 2019. 12(1): p. 54.
11. Hamilton, A.J. and D.C. Baulcombe, A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999. 286(5441): p. 950-2.
12. Meister, G. and T. Tuschl, Mechanisms of gene silencing by double-stranded RNA. Nature, 2004. 431(7006): p. 343-9.
13. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
14. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-355.
15. Baulcombe, D., RNA silencing in plants. Nature, 2004. 431(7006): p. 356-63.
16. Napoli, C., C. Lemieux, and R. Jorgensen, Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell, 1990. 2(4): p. 279-289.
17. Wang, H., et al., Reference genes for normalizing transcription in diploid and tetraploid Arabidopsis. Sci Rep, 2014. 4: p. 6781.
18. Kasajima, I., et al., A protocol for rapid DNA extraction fromArabidopsis thaliana for PCR analysis. Plant Molecular Biology Reporter, 2004. 22(1): p. 49-52.
19. Trieu Anthony Thinh, N., Miscanthus Transformation Methods. 2010, CERES INC
TRIEU ANTHONY THINH NGOC: WO.
20. Zhang, X., et al., Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 2006. 1(2): p. 641-6.
21. Jang, G.J., et al., Processing bodies control the selective translation for optimal development of Arabidopsis young seedlings. Proc Natl Acad Sci U S A, 2019. 116(13): p. 6451-6456.
22. Czechowski, T., et al., Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 2005. 139(1): p. 5-17.
23. Ghareeb, H., S. Laukamm, and V. Lipka, COLORFUL-Circuit: A Platform for Rapid Multigene Assembly, Delivery, and Expression in Plants. Front Plant Sci, 2016. 7: p. 246.
24. Hackett, J.A. and M.A. Surani, DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Biol Sci, 2013. 368(1609): p. 20110328.
25. Elmayan, T., et al., Arabidopsis mutants impaired in cosuppression. Plant Cell, 1998. 10(10): p. 1747-58.
26. Zheng, X., et al., The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep, 2007. 26(8): p. 1195-203.
27. Bhullar, S., et al., Analysis of promoter activity in transgenic plants by normalizing expression with a reference gene: anomalies due to the influence of the test promoter on the reference promoter. J Biosci, 2009. 34(6): p. 953-62.
28. Song, G.Q. and K.C. Sink, Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus x P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep, 2006. 25(2): p. 117-23.
29. Song, G.Q. and K.C. Sink, Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Rep, 2004. 23(7): p. 475-84.
指導教授 吳素幸 陸重安(Shu-Hsing Wu Chung-An Lu) 審核日期 2021-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明