博碩士論文 108223002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.12.73.64
姓名 吳哲愷(Che-Kai Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 胞嘧啶及鳥嘌呤於金(111)電極上吸附-陰陽離子pH值及電位控制的影響
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 文獻指出鳥嘌呤(Guanine, G)具有治療腫瘤的能力,經過修飾的四聚體層狀結構,會影響細胞端粒酶的複製,後續研究也指出添加高濃度的鉀離子可以使G四聚體結構更加穩定,近期對G分子的結構研究大多在超高真空系統中進行。
本研究利用電位控制掃描式穿隧電子顯微鏡(STM)觀察G分子在不同陰陽離子、pH值及電位控制下,於金電極上的吸附結構。本研究皆以Ag/AgCl參考電極為電位標示。在酸性溶液中,陰離子的共吸附會造成不同G的吸附結構。在負電位時,G分子以平躺式物理吸附在金電極上,但隨著電位越正,轉變成直立型的化學吸附。STM結果顯示在物理吸附時,G分子以平躺式的構型吸附並形成整齊的二維結構,而化學吸附時,G分子直立於金電極上形成線性結構,更正的電位會造成吸附量增加,導致線性結構的扭曲,類似指紋形狀。G分子在中性溶液的溶解度下降,只有在負電位剛添加時能夠看到結構外,在較正電位分子的吸附量增加,從單層變為多層,而表面會變得粗糙。在鹼性溶液中G的溶解度明顯提升,在負電位是無序的分子吸附,但在正電位會出現指紋狀的結構。陽離子也會和G分子共吸附,從硫酸與過氯酸中吸附時,鉀離子和G分子形成一整齊的線型結構,從分子解析的STM圖像,可以看到分子與鉀離子以1:1的比例,可能以陰陽離子對的型態共吸附在電極表面。
後續也研究胞嘧啶(Cytosine, C)分子在金上的吸附,在高真空中C分子形成無序的結構,但在有電位控制下,不同電解液中發現數種整齊的C結構。在過氯酸的中,的CV圖在C分子吸附前後圖形變化不大,僅電流有所下降, pH值得測試發現在酸性條件中,C吸附很可能為兩個分子共用一個氫離子的特殊結構。在STM觀察時,C分子會迅速在金電極上吸附形成一整齊的分子結構-(3√3 × √13),此一結構穩定存在於(0~0.4 V)的電位區間,在正電位時,吸附C分子轉換成(3√3 × √19)結構。
在了解C及G分子各別的吸附結構後,將兩者同時配置於同一溶液中觀察,藉此想探討兩分子是否會共同吸附在金電極上,也同時研究電位控制及陰離子影響。在過氯酸條件下,以1:1的比例混合均勻後添加,CV的環境下,結果與單一的G分子吸附相似,在STM的實驗中,負電位的結構和G分子無異,但在正電位載體時,分子吸附量增加而形成二層的結構,位於上層分子形成一鏈狀結構,它的長度為5-20 nm寬度約為0.7 nm,此一分子寡聚體可能是兩種分子以氫鍵結合而成,C和G在STM圖像中明顯有亮度的差異,鏈狀特徵的量和電位有關,在0.1V時形成最多分子鏈條。
摘要(英) Some literature pointed out that guanine (G) can be used as a drug to treat tumors. It is thought that cage-like tetramer structure of G can inhibit the replication of cell telomerase. The G tetramer has been prepared in vacuum after annealing. This is followed by more research to show that co-adsorption of potassium ions can facilitate the formation of G tetramer, which show improved structural stability. But again these studies were performed in ultra-high vacuum systems, which differ markedly from physiological condition.
In this study, a potential-controlled scanning tunneling electron microscope (STM) was used to study the adsorption structure of G molecules on the gold electrode as a function of anion and cation, pH of the media, and electrochemical potentials. In acidic solutions, the co-adsorption of anions resulted in different adsorption structures. G molecules were physically adsorbed on the gold electrode at negative potentials, but transformed to chemisorption as the potential was made more positive. The orientation of G admolecule changed from horizontal to upright and the surface coverage increased with more positive potential. This was the first stage of G adsorption, leading to ordered G adlayers on Au(111) electrode, as revealed by molecular resolution STM imaging. The second stage of G adsorption yielded crooked linear structure, having morphology similar to the shape of a fingerprint. In neutral phosphoric solutions only one ordered structure was seen at negative potential and deposition of G to give multilayer. The solubility of G in alkaline solution is significantly higher, but protracted STM imaging showed that G adlayer was disordered at negative potential, and transformed into a fingerprint-like structure at positive potential. The effect of potassium ions on G admolecules on Au(111) was examined with samples prepared by immersing in sulfuric and perchloric acids containing equal concentration G and K+. In sir STM imaging showed that G and potassium ions were co-adsorbed in an ordered structure with a 1:1 ratio. The degree of ordering deteriorated with solutions with different G/K+ ratios.
The adsorption of cytosine (C) molecule on Au(111) electrode was also examined. In contrast to disordered C structure formed in high vacuum, several C structures were found, depending on the chemical identity of the electrolyte. Aided by the CV results obtained in perchloric acid, partial deprotonation occurred at some positive potential. STM imaging revealed a (3√3 × √13)–C structure in a wide potential range, but transformed into (3√3 × √19) at more positive potential.
Finally, the co-adsorption of C and G molecules on Au(111) was investigated. The obtained STM results are used to understand the hydrogen bond formation within the adlayer potential control and anion co-adsorption. The CV recorded in perchloric acid containing1:1 C/G had the same characteristics as that of pure G. STM imaging showed that ordered structures the same as that of G molecule was formed at negative potential, but a bi-layer film was formed with the upper layer forming molecular chains 5-20 nm long and 0.7 nm wide. This structure is ascribed to mixed C and G adlayer linked by intermolecular hydrogen bonds. C and G admolecules could be differentiated by their STM intensities; C was lower than G by 0.01 nm. The mixed adlayer was most populated at 0.1V.
關鍵字(中) ★ 胞嘧啶
★ 鳥嘌呤
★ 金(111)
★ 界面電化學
★ 電位控制
關鍵字(英)
論文目次 摘要 VII
Abstract IX
目錄 XII
圖表目錄 XVI
第一章 緒論 1
1–1 DNA分子概述 1
1 – 1 – 1 去氧核糖核酸分子 1
1 – 1 – 2 DNA分子的發展 1
1 – 1 – 3 DNA分子特性 2
1 – 2 分子自組裝 3
1 – 2 – 1 分子間作用力 4
1 – 2 – 2 氫鍵作用力 4
1 – 2 – 3 分子吸附作用力 6
1–3 相關文獻回顧 7
1–4 研究動機 8
第二章 實驗部分 10
2–1 實驗藥品 10
2–2 實驗用氣體 11
2–3 金屬線材 11
2–4 實驗儀器設備 11
2 – 4 – 1 循環伏安儀 (Cyclic Voltammetry, CV) 11
2 – 4 – 2 循環伏安儀 (Point of Zero Charge, PZC) 11
2 – 4 – 3 掃描式穿隧電子顯微鏡(Scanning Tunneling Microscope,STM) 12
2 – 4 – 4 表面增強紅外光譜儀(Surface Enhanced Infrared Absorption Spectroscopy, SEIRAS) 13
2 – 4 – 5 研磨機(Grinder Polisher) 13
2 – 4 – 6 超音波震盪器(Ultrasonic Vibrator) 13
2–5 實驗步驟 14
2 – 5 – 1 金(111)單晶CV電極置備 14
2 – 5 – 2 金(111)單晶STM電極置備 14
2 – 5 – 3 STM分子薄膜製備 15
2 – 5 – 4 循環伏安法(CV)的前處理 16
2 – 5 – 5 掃描式穿隧電子顯微鏡(STM)的探針製備 16
2 – 5 – 6 電化學掃描式穿隧電子顯微鏡(EC-STM)的前處理 16
2 – 5 – 7 表面增強紅外光譜儀(SEIRAS)操作步驟 17
第三章 Guanine分子於Au(111)電極吸附之結果 21
3–1 電位控制對Guanine在過氯酸中吸附結構之影響 21
3 – 1 – 1 添加50 μM Guanine於0.1 M過氯酸之CV圖 21
3 – 1 – 2 添加50 μM Guanine於0.1 M過氯酸之PZC圖 23
3 – 1 – 3 添加50 μM Guanine於0.1 M過氯酸之IR光譜圖 25
3 – 1 – 4 添加1 μM Guanine於0.1 M過氯酸之STM圖 27
3 – 1 – 4 添加50 μM Guanine於0.1 M過氯酸之STM圖 30
3–2 電位控制對Guanine在硫酸中吸附結構之影響 36
3 – 2 – 1 添加50 μM Guanine於0.1 M硫酸之CV圖 36
3 – 2 – 2 添加50 μM Guanine於0.1 M硫酸之PZC圖 38
3 – 2 – 3 添加50 μM Guanine於0.1 M硫酸之STM圖 40
3–3 Guanine在磷酸緩衝溶液中吸附結構 45
3 – 3 – 1 添加50 μM Guanine於0.1 M磷酸緩衝溶液之CV圖 45
3 – 3 – 2 添加50 μM Guanine於0.1 M PBS之STM圖 47
3–4 Guanine在不同陰離子溶液中吸附結構 50
3 – 4 – 1 添加50 μM Guanine於0.1 M磷酸之CV圖 50
3 – 4 – 2 添加50 μM Guanine於0.1 M磷酸之STM圖 52
3 – 4 – 3 添加50 μM Guanine於0.1 M氫氧化鉀之CV圖 55
3 – 4 – 4 添加50 μM Guanine於0.1 M氫氧化鉀之STM圖 57
3 – 4 – 5 添加50 μM Guanine於0.1 M鹽酸之CV圖 60
3 – 4 – 6 添加50 μM Guanine於0.1 M鹽酸之STM圖 62
3–5 空氣下Guanine吸附結構在受鉀離子之影響 64
3 – 5 – 1 浸泡2 mM Guanine + 2 mM鉀離子於硫酸之CV圖 64
3 – 5 – 2 浸泡2 mM Guanine + 2 mM鉀離子於0.1 M硫酸之STM圖(0.47 V) 66
3 – 5 – 3 浸泡2 mM Guanine + 2 mM鉀離子於過氯酸之CV圖 70
3 – 5 – 4 浸泡2 mM Guanine + 2 mM鉀離子於0.1 M過氯酸之STM圖(0.47 V) 72
3–6 第三章小結 74
第四章 Cytosine分子於Au(111)電極吸附結果 77
4–1 電位控制對Cytosine在過氯酸中吸附結構之影響 77
4 – 1 – 1 添加1 mM Cytosine於0.1 M過氯酸之CV圖 77
4 – 1 – 2 添加1 mM Cytosine於pH=3及pH=6之比較CV圖 79
4 – 1 – 3 添加1 mM Cytosine於0.1 M過氯酸之PZC圖 81
4 – 1 – 4 添加1 mM Cytosine於0.1 M過氯酸之IR圖 83
4 – 1 – 5 添加1 mM Cytosine於0.1 M過氯酸之STM圖 85
4–2 電位控制對Cytosine在硫酸中吸附結構之影響 91
4 – 2 – 1 添加1 mM Cytosine於0.1 M硫酸之CV圖 91
4 – 2 – 2 添加1 mM Cytosine於0.1 M硫酸之STM圖 93
4–3 電位控制對Cytosine在鹽酸中吸附結構之影響 97
4 – 3 – 1 添加1 mM Cytosine於0.1 M鹽酸之CV圖 97
4 – 3 – 2 添加1 mM Cytosine於0.1 M鹽酸之STM圖 99
4–4 第四章小結 101
第五章 Cytosine與Guanine共沉積之結果與討論 104
5–1 電位控制對共沉積在過氯酸中吸附結構之影響 104
5 – 1 – 1 添加0.1 mM 混合溶液於0.1 M過氯酸之CV圖 104
5 – 1 – 2 添加不同比例混合溶液於0.1 M過氯酸之CV圖 107
5 – 1 – 3 添加0.1 mM 混合溶液於0.1 M過氯酸之STM圖 109
5–2 電位控制對共沉積在硫酸中吸附結構之影響 112
5 – 2 – 1 添加0.1 mM 混合溶液於0.1 M硫酸之CV圖 112
5 – 2 – 2 添加不同比例混合溶液於0.1 M硫酸之CV圖 115
5 – 2 – 3 添加0.1 mM 混合溶液於0.1 M硫酸之STM圖 117
5–3 第五章小結 124
第六章 結論 127
第七章 參考文獻 129
第八章 補充資料 131
8–1 浸泡2 mM Guanine + 2 mM鈉離子於硫酸之STM圖 131
參考文獻 1. Franz, J.; Gianturco, F. A., Low-energy positron scattering from DNA nucleobases: the effects from permanent dipoles. The European Physical Journal D 2014, 68, 183 (10).
2. Mergny, J.-L.; Hélène, C., G-quadruplex DNA: a target for drug design. Nature medicine 1998, 4 (12), 1366-1367.
3. Desiraju, G. R., Crystal gazing: Structure prediction and polymorphism. Science 1997, 278 (5337), 404-405.
4. Muscat, J.; Newns, D., Chemisorption on metals. Progress in Surface Science 1978, 9 (1), 1-43.
5. Ueyama, H.; Takagi, M.; Takenaka, S., A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet− potassium ion complex formation. Journal of the American Chemical Society 2002, 124 (48), 14286-14287.
6. Xu, W.; Kelly, R. E.; Gersen, H.; Laegsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F., Prochiral guanine adsorption on Au111: an entropy-stabilized intermixed guanine-quartet chiral structure. Small 2009, 5 (17), 1952-6.
7. Chen, F.; Ma, Y.; Wang, Y.; Qi, L., A Novel Tautomeric Polymorph of Anhydrous Guanine and Its Reversible Water Harvesting Property. Crystal Growth & Design 2018, 18 (11), 6497-6503.
8. Xu, W.; Tan, Q.; Yu, M.; Sun, Q.; Kong, H.; Laegsgaard, E.; Stensgaard, I.; Kjems, J.; Wang, J. G.; Wang, C.; Besenbacher, F., Atomic-scale structures and interactions between the guanine quartet and potassium. Chem Commun (Camb) 2013, 49 (65), 7210-2.
9. Xu, W.; Wang, J.-g.; Yu, M.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Hammer, B.; Wang, C.; Besenbacher, F., Guanine-and potassium-based two-dimensional coordination network self-assembled on Au (111). Journal of the American Chemical Society 2010, 132 (45), 15927-15929.
10. Kelly, R. E.; Lukas, M.; Kantorovich, L. N.; Otero, R.; Xu, W.; Mura, M.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F., Understanding the disorder of the DNA base cytosine on the Au(111) surface. J Chem Phys 2008, 129 (18), 184707.
11. Li, W.; Jin, J.; Liu, X.; Wang, L., Structural Transformation of Guanine Coordination Motifs in Water Induced by Metal Ions and Temperature. Langmuir 2018, 34 (27), 8092-8098.
12. Xu, S.; Dong, M.; Rauls, E.; Otero, R.; Linderoth, T. R.; Besenbacher, F., Coadsorption of guanine and cytosine on graphite: ordered structure based on GC pairing. Nano letters 2006, 6 (7), 1434-1438.
13. Chen, L.-C.; Osawa, M.; Chang, H.-C., 《表面增顯紅外光技術與其在界面科學之應用研究》. 科儀新知, 2014, 1-33
14. Hasoň, S.; Pivoňková, H.; Fojta, M., Influence of the lengths of thymine, cytosine, and adenine stretches on the two-dimensional condensation of oligodeoxynucleotides at mercury and silver amalgam electrode surfaces. Journal of Electroanalytical Chemistry 2019, 849.
15. Li, H.-Q.; Chen, A.; Roscoe, S. G.; Lipkowski, J., Electrochemical and FTIR studies of L-phenylalanine adsorption at the Au (111) electrode. Journal of Electroanalytical Chemistry 2001, 500 (1-2), 299-310.
16. Rosa, M.; Di Felice, R.; Corni, S., Adsorption Mechanisms of Nucleobases on the Hydrated Au(111) Surface. Langmuir 2018, 34 (49), 14749-14756.
17. Tao, N.; DeRose, J.; Lindsay, S., Self-assembly of molecular superstructures studied by in situ scanning tunneling microscopy: DNA bases on gold (111). The Journal of Physical Chemistry 1993, 97 (4), 910-919.
18. Li, Q.; Batchelor-McAuley, C.; Compton, R. G., Electrochemical oxidation of guanine: Electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. The Journal of Physical Chemistry B 2010, 114 (21), 7423-7428.
19. Cruz-Ortiz, A. s. F.; Rossa, M.; Berthias, F.; Berdakin, M.; Maitre, P.; Pino, G. A., Fingerprints of Both Watson–Crick and Hoogsteen Isomers of the Isolated (Cytosine-Guanine) H+ Pair. The journal of physical chemistry letters 2017, 8 (22), 5501-5506.
20. Rosa, M.; Corni, S.; Di Felice, R., A Density Functional Theory Study of Cytosine on Au(111). The Journal of Physical Chemistry C 2012, 116 (40), 21366-21373.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2021-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明