博碩士論文 108223037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.191.139.25
姓名 許飴軒(Yi-Hsuan Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 探討胞嘧啶與甲基胞嘧啶在金(111)電極上的吸附結構
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用掃描式穿隧電子顯微鏡(STM)和循環伏安法(CV)來探討胞嘧啶(Cytosine, C)與甲基胞嘧啶(Methylcytosine, mC)在金(111)電極上的結構,雖然已有一些相關的研究報導,但對於分子間作用力、金載體結構、分子濃度以及pH值等變因還沒有系統性地完整探討。
超高真空環境中,胞嘧啶分子會透過分子間氫鍵在金(111)載體上形成鋸齒狀的鏈條和圓環,而在電化學環境中,胞嘧啶分子存在多種互變異構物及酸鹼平衡,導致帶電界面上其豐富的結構變化,STM結果顯示胞嘧啶分子在負電位為物理吸附,在正電位會以酮-亞胺異構物的型態鍵結在金表面,形成一直立式化學性吸附分子層,且較正的電位會與陰離子共吸附在金表面。更特別的是,胞嘧啶分子在金表面的覆蓋度會隨著電位越正而越高,甚至形成雙層胞嘧啶膜。
在分子結構上,5號位的甲基官能基導致甲基胞嘧啶與胞嘧啶和金(111)的作用力大不相同,甲基胞嘧啶甚至能從金(111)載體的平台拔起金原子,之後再與金原子形成有序吸附結構。當溶液含等比例胞嘧啶與甲基胞嘧啶時,CV結果展現甲基胞嘧啶的特徵,但STM的結果顯示,在負電位時兩分子共吸附在金(111)表面,而正電位則以甲基胞嘧啶為主,甲基展現出一推電子的效應,其強度足以讓甲基胞嘧啶和金電極有較強的作用力。
DNA序列中胞嘧啶甲基化程度牽涉到腫瘤與不孕症的發生,而DNA鹼基在金電極上的吸附是生物表面科學研究的模型系統,也是生物電化學、生物傳感器和納米材料發展的一個重要課題,透過本次實驗,更進一步瞭解胞嘧啶與甲基胞嘧啶在金電極上的吸附行為。
摘要(英) This study focus on using in situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to investigate the structure of cytosine(C)and methylcytosine(mC)on Au(111)electrodes. Although similar studies have been conducted by using in situ STM and vibrational spectroscopy, many critical issues such as intermolecular interaction, substrate structure, and concentration of C are yet to be explored.
Using gold as the substrate is a way to mitigate the adsorbate-and-substrate interaction and to highlight intermolecular interaction between adsorbed C molecules. Indeed, intermolecular hydrogen bond guides the organization of C molecules into zigzagged chains and circular rings on Au(111) in vacuum. In comparison, controlling the potential of Au electrode can influence the adsorption strength and the binding mode of C. In addition, the tautomerization and acid-base equilibrium of C molecule in the aqueous media endow a rich structural variation at the electrified interface.
From the perspective of molecular structure, mC and C differ by one methyl group at the 5-position of a pyrimidine ring. The methyl group exerted a notable electronic effect, rendering a stronger interaction between MC and gold. This effect could be strong enough to cause mining of the Au(111) surface, where gold atoms were liberated from the terrace, and form an ordered structure with mC molecule. The adsorption strength of C and mC on Au(111) was conducted in a solution containing equal amount of mC and C. The obtained results show that they were co-adsorbed on the gold surface at negative potential, but mC adsorption prevailed at positive potential.
The degree of cytosine methylation in the DNA sequence is related to tumors and infertility. The adsorption of DNA base on gold electrode is considered as a model system to the study of biological surface science, which represents an important aspect in the development of bioelectrochemistry, biosensors, and nanomaterials. This study can make us further understand the adsorption behavior of C and mC on the gold electrode.
關鍵字(中) ★ 胞嘧啶
★ 甲基胞嘧啶
★ 掃描式穿隧電子顯微鏡
★ 分子自組裝
★ 界面電化學
★ DNA甲基化
關鍵字(英) ★ cytosine
★ methylcytosine
★ Scanning Tunneling Microscope,STM
★ Molecular self-assembly
★ interfacial electrochemistry
★ DNA methylation
論文目次 摘要 ⅰ
Abstract ⅱ
誌謝 ⅳ
目錄 ⅴ
圖目錄 ⅰⅹ
表目錄 ⅹⅴⅰ
第1章 緒論 1
1-1 去氧核醣核酸(Deoxyribonucleic acid,DNA) 1
1-1-1 DNA簡介 1
1-1-2 DNA甲基化 1
1-2 分子自組裝 2
1-3 研究動機 2
第2章 實驗部分 4
2-1 化學藥品 4
2-2 實驗氣體 5
2-3 金屬線材 5
2-4 儀器設備 6
2-4-1 循環伏安儀(Cyclic Voltammetry,CV) 6
2-4-2 掃描式穿隧電子顯微鏡(Scanning Tunneling Microscope,STM) 6
2-4-3 衰減式全反射式表面增强紅外反射吸收光譜(ATR-SEIRAS) 6
2-4-4 X射線光電子能譜學(X-ray Photoemission Spectroscopy,,XPS) 7
2-4-5 研磨機(Grinder Polisher) 7
2-4-6 超音波震盪器(Ultrasonic Vibrator) 7
2-5 實驗步驟 10
2-5-1 金(111)CV電極製備 10
2-5-2 循環伏安法(CV)的前處理 10
2-5-3 金(111)STM電極製備 10
2-5-4 掃描式穿隧電子顯微鏡(STM)的前處理 11
2-5-5 STM探針置備 11
2-5-6 金(111)ATR-SEIRAS電極製備 12
第3章 探討不同溶液中胞嘧啶在金(111)上的結構 13
3-1 硫酸溶液中胞嘧啶在金(111)-(1×1)上的結構 13
3-1-1 硫酸溶液中胞嘧啶的CV圖 13
3-1-2 硫酸溶液中胞嘧啶的STM圖 17
3-2 過氯酸溶液中胞嘧啶在金(111)-(1×1)上的結構 29
3-2-1 過氯酸溶液中胞嘧啶的CV圖 29
3-2-2 過氯酸溶液中胞嘧啶的STM圖 33
3-3 磷酸溶液中胞嘧啶在金(111)上的結構 48
3-3-1 磷酸溶液中胞嘧啶的CV圖 48
3-3-2 磷酸溶液中胞嘧啶在金(111)-(1×1)上的STM圖 53
3-3-3 磷酸溶液中胞嘧啶在金(111)- 重排上的STM圖 64
3-4 磷酸緩衝溶液(pH6)中胞嘧啶在金(111)上的結構 67
3-4-1 磷酸緩衝溶液中胞嘧啶的CV圖 67
3-4-2 磷酸緩衝溶液中胞嘧啶在金(111)上的STM圖 70
3-5 硫酸鉀中胞嘧啶在金(111)上的結構 76
3-5-1 硫酸鉀溶液中胞嘧啶的CV圖 76
3-5-2 硫酸鉀溶液中胞嘧啶在金(111)上的STM圖 79
3-6 過氯酸鉀中胞嘧啶在金(111)上的結構 90
3-6-1 過氯酸鉀溶液中胞嘧啶的CV圖 90
3-6-2 過氯酸鉀溶液中胞嘧啶在金(111)上的STM圖 94
3-7 不同溶液中胞嘧啶在金(111)上的結構比較 100
3-7-1 不同溶液中胞嘧啶在金(111)上的CV圖比較 100
3-7-2 不同溶液中胞嘧啶在金(111)上的結構比較 103
第4章 探討不同溶液中甲基胞嘧啶在金(111)上的結構 119
4-1 酸性溶液中甲基胞嘧啶在金(111)上的結構 119
4-1-1 酸性溶液中甲基胞嘧啶的CV圖 119
4-1-2 酸性溶液中甲基胞嘧啶在金(111)上的STM圖 126
4-2 磷酸緩衝溶液(pH6.6)中甲基胞嘧啶在金(111)上的結構 139
4-2-1 磷酸緩衝溶液中甲基胞嘧啶的CV圖 139
4-2-3 磷酸緩衝溶液中甲基胞嘧啶在金(111)上的STM圖 142
4-3 硫酸鉀中甲基胞嘧啶在金(111)上的結構 150
4-3-1 硫酸鉀溶液中甲基胞嘧啶的CV圖 150
4-3-2 硫酸鉀溶液中甲基胞嘧啶在金(111)上的STM圖 153
4-4 過氯酸鉀溶液中甲基胞嘧啶在金(111)上的結構 160
4-4-1 過氯酸鉀溶液中甲基胞嘧啶的CV圖 160
4-4-2 過氯酸鉀溶液中甲基胞嘧啶的STM圖 163
4-5 不同溶液中甲基胞嘧啶在金(111)上的結構比較 169
4-5-1 不同溶液中甲基胞嘧啶在金(111)上的CV圖比較 169
4-5-2 不同溶液中甲基胞嘧啶在金(111)上的結構比較 172
第5章 探討胞嘧啶與甲基胞嘧啶在金(111)上的結構 180
5-1 過氯酸溶液中胞嘧啶與甲基胞嘧啶共吸附在金(111)上的結構 180
5-1-1 過氯酸溶液中共添加胞嘧啶與甲基胞嘧啶的CV圖 180
5-1-2 過氯酸溶液中胞嘧啶與甲基胞嘧啶在金(111)上的STM圖 183
5-1-3 過氯酸溶液中胞嘧啶與甲基胞嘧啶在金(111)上的結構 187
第6章 結論 190
第7章 參考文獻 191
附錄 195
參考文獻 1. S.A. Belinsky, K.J. Nikula, W.A. Palmisano, R. Michels, G. Saccomanno, E. Gabrielson, S.B. Baylin, J.G. Herman, “Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis.” Proceedings of the National Academy of Sciences, 1998, 95(20), 11891-11896.
2. N.J. Tao, J.A. DeRose, S.M. Lindsay, “Self-assembly of molecular superstructures studied by in situ scanning tunneling microscopy: DNA bases on Au(111).”, J. Phys. Chem. 1993, 97, 910-919.
3. C. Prado, F. Prieto, M. Rueda, J. Feliu, A. Aldaz,” Adenine adsorption on Au(1 1 1) and Au(1 0 0) electrodes: Characterisation, surface reconstruction effects and thermodynamic study.”, Electrochim. Acta, 2007, 52, 3168-3180.
4. T. Wandlowski, D. Lampner, S.M. Lindsay, “Structure and stability of cytosine adlayers on Au(111): an in-situ STM study.”, J. Electroanal. Chem., 1996, 404, 215-226.
5. T. Zolotoukhina, M. Yamada, S. Iwakura, “Vibrational Spectra of Nucleotides in the Presence of the Au Cluster Enhancer in MD Simulation of a SERS Sensor.” Biosensors, 2021, 11,37.
6. S. Hasoň, H. Pivoňková, M. Fojta, “Influence of the lengths of thymine, cytosine, and adenine stretches on the two-dimensional condensation of oligodeoxynucleotides at mercury and silver amalgam electrode surfaces.”, J. Electroanal. Chem., 2019, 849, 113364.
7. A.M. Oliveira-Brett, J.A. Piedade, L.A. Silva, V.C. Diculescu, “Voltammetric determination of all DNA nucleotides.”, Anal. Biochem., 2004, 332, 321-329.
8. T. Wandlowski, “Phase transitions in uracil adlayers on Ag, Au and Hg electrodes—substrate effects.”, J. Electroanal. Chem., 1995, 395, 83-89.
9. K. Itaya, “In situ scanning tunneling microscopy in electrolyte solutions.”, Prog. Surf. Sci., 1998, 58, 121-247.
10. M. Osawa, “Surface-Enhanced Infrared Absorption.”, Top. Appl. Phys., 2001, 81, 163-187.
11. R. Sharafdini, M. Mohammadpour, S. Ramazani, Z. Jamshidi, “Theoretical simulation of surface-enhanced resonance Raman spectroscopy of cytosine and its tautomers.”, J. Raman Spectrosc., 2020, 51, 55-65.
12. B.-Y. Wen, X. Jin, Y. Li, Y.-H. Wang, C.-Y. Li, M.-M. Liang, R. Panneerselvam, Q.-C. Xu, D.-Y. Wu, Z.-L. Yang, J.-F. Li, Z.-Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.”, Analyst, 2016, 141, 3731-3736.
13. R. Otero, M. Lukas, R. Kelly, W. Xu, E. Lægsgaard, I. Stensgaard, L. Kantorovich, F. Besenbacher, “Elementary Structural Motifs in a Random Network of Cytosine Adsorbed on a Gold(111) Surface.”, Science (New York, N.Y.), 2008, 319, 312-315.
14. R. Saravanan, I. Avasthi, R. Prajapati, S. Verma, “Surface modification and pattern formation by nucleobases and their coordination complexes.”, RSC Adv., 2018, 8, 24541-24560.
15. N.J. Tao, J.A. DeRose, S.M. Lindsay, “Self-assembly of molecular superstructures studied by in situ scanning tunneling microscopy: DNA bases on gold (111).”, J. Phys. Chem., 1993, 97, 910-919.
16. A. Brotons, R.M. Arán-Ais, J.M. Feliu, V. Montiel, J. Iniesta, F.J. Vidal-Iglesias, J. Solla-Gullón, “Electrochemical detection of cytosine and 5-methylcytosine on Au(111) surfaces.”, Electrochem. Commun., 2016, 65, 27–30.
17. K. Ataka, M. Osawa, “In situ infrared study of cytosine adsorption on gold electrodes.”, J. Electroanal. Chem., 1999, 460, 188-196.
18. Alvarez-Malmagro, J., Prieto, F., & Rueda, M.. “In situ surface enhanced infrared absorption spectroscopy study of the adsorption of cytosine on gold electrodes.” Journal of Electroanalytical Chemistry., 2019, 849, 113362.
19. M. Iakhnenko, V. Feyer, N. Tsud, O. Plekan, F. Wang, M. Ahmed, O.V. Slobodyanyuk, R.G. Acres, V. Matolín, K.C. “Prince, Adsorption of Cytosine and AZA Derivatives of Cytidine on Au Single Crystal Surfaces.”, J. Phys. Chem. C, 2013, 117
20. Song, M. J., Lee, S. K., Lee, J. Y., Kim, J. H., & Lim, D. S. “Electrochemical sensor based on Au nanoparticles decorated boron-doped diamond electrode using ferrocene-tagged aptamer for proton detection.” Journal of Electroanalytical Chemistry, 2012, 677, 139-144.
21. Y. Fang, S.-Y. Ding, M. Zhang, S.N. Steinmann, R. Hu, B.-W. Mao, J.M. Feliu, Z.-Q. Tian, “Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution.”, J. Am. Chem. Soc., 2020, 142, 9439-9446.
22. O.M. Magnussen, J. Hageböck, J. Hotlos, R.J. Behm, “In situ scanning tunnelling microscopy observations of a disorder–order phase transition in hydrogensulfate adlayers on Au(111).”, Faraday Discussions, 1992, 94, 329-338.
23. A. Cuesta, M. Kleinert, D.M. Kolb, “The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: an in situ STM study.” , Phys. Chem. Chem. Phys., 2000, 2,5684-5690.
24. Marchenko, A., Lukyanets, S., & Cousty, J.. “Adsorption of alkanes on Au (111): Possible origin of STM contrast at the liquid/solid interface.”, Physical Review B, 2002, 65(4),045414.
25. Chen, Q., Yan, H. J., Yan, C. J., Pan, G. B., Wan, L. J., Wen, G. Y., & Zhang, D. Q.. “STM investigation of the dependence of alkane and alkane (C18H38, C19H40) derivatives self-assembly on molecular chemical structure on HOPG surface.”, Surface Science, 2008, 602(6), 1256-1266.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2021-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明