博碩士論文 102223029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.118.10.158
姓名 廖偉呈(Wei-Cheng Liao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 平整二維鉑於金載體及空氣下火焰法製備非貴金屬合金單晶的電催化
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文包括兩個能源轉換為主題的研究。首先,鉑廣泛用於催化材料上,礙於礦產之稀有,人們極力尋找提升單位質量活性的方法。二維平舖的每顆鉑原子皆能和反應物接觸以貢獻反應,因此本實驗使用穩定度高且易前處理的金(111)乘載單層鉑。掃描穿隧顯微鏡(STM)發現金(111)上的單層鉑從0.278奈米被壓縮至0.269奈米,硫酸氫根及氫氧根的毒化因而減弱,因此與鉑(111)相比,單層鉑具有較高的氧還原(ORR)及氫催化(HO/ER)活性。氫氧根吸附會造成單層鉑的隆起,略微改善甲醇氧化(MOR)能力。雙層鉑在鉑(111)甲醇氧化峰電位下的電流是鉑(111)的1.7倍。一氧化碳間的斥力將鉑原子間距拉大至0.289奈米,因此吸附能異常增大。第二個研究改良貴金屬的單晶製備方法及器材。利用還原焰使非貴金屬再結晶,再用保護性氣體降溫以避免氧化。X射線光電子光譜(XPS)顯示無氧單晶銅表面僅有三層(1奈米)氧化亞銅。STM顯示高表面能(surface energy)的鎳並不存在退火後的銅鎳單晶表層。低濃度鎳(1.5 at%)摻雜能提升甲醛(HCHO)電氧化活性達十二倍;銅鈷合金並未觀察到此現象,因此應力效應(strain effect)影響不顯著。同位素取代實驗證明後續的氫氧鍵斷裂為新的速率決定步驟(RDS)。理論計算顯示底層鎳透過電子效應(electronic effect)增強表面數個銅原子對H2COOH-離子的吸附,因此微量的鎳即能顯著地改善催化活性。
摘要(英) Two subjects on energy conversion are studied in this thesis. First, to reduce the loading of Pt in catalyst, how to expose all the Pt atoms is an important issue. Two-dimensional Pt monolayer on Au(111) (Pt ML) can be fabricated by immersion of Au(111) in CO saturated aqueous Na2PtCl6 solution. After the stripping of capped CO, the bare Pt with hexagonally close-packed structure is exposed. Scanning tunneling microscopy (STM) shows the compressive strain on the Pt ML and the shrinkage of Pt radius from 0.278 nm for Pt(111) to 0.269 nm. This shrinkage results in the d-band center far away from the Fermi-level and thus weakens the adsorptions. This’s an advantage for hydrogen evolution/oxidation reaction (HE/OR) and oxygen reduction reaction (ORR) in sulfuric acid because the hydrogen atom and bisulfate adsorbs competitively with the reactants. However, weakening the adsorption of OH on Pt ML leads to a positive shift of the onset potential of methanol oxidation reaction (MOR). The OH adsorbs strongly at the step and thus lifts the atoms in a Pt ML. The caused island serves as an active site promoting the activity toward MOR. At the peak potential of MOR at Pt(111), the current for two-layered Pt is 1.7 times higher. Strong CO-CO repulsive interaction enlarges the Pt-Pt distance from 0.269 nm to 0.289 nm, making the d-band center close to Fermi-level. As the result, CO adsorbs surprisingly strong on Pt ML. The second research develops a tool and method for fabricating nonprecious metal single crystal (SC). Serving as a good catalyst for CO and CO2 electroreduction, Cu gains lots of studies recently. Owing to be willing to oxidize, doing the study on the SC is difficult. Modified commercial torch is used to recrystallize Cu in the reducing flame and enables the cooling in protecting gas flow. X-ray photoelectron spectroscopy (XPS) reveals 1 nm of Cu2O covers on an oxygen-free Cu SC. STM shows Ni with high surface energy is absent at the surface of annealed CuNi SC. Trace of Ni (1.5 %) enhances the activity toward formaldehyde electrooxidation by 12 times which is not seen with Co leading to the conclusion of strain effect is not the main reason. Isotopic substitution experiments show the cleavage of O-D bond in H2COOH- is the rate-determining step (RDS) at CuNi SC. Theoretical calculation suggests that Ni enhances the adsorption of H2COOH- on Cu via long-ranged electronic effect and thus greatly boosts the activity with few Ni atom.
關鍵字(中) ★ 掃描穿隧顯微鏡
★ 單層鉑
★ 非貴金屬合金單晶製備
★ 電催化
★ 甲醛電氧化
★ X射線光電子光譜儀
★ 鎳摻雜銅(111)
關鍵字(英)
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 viii
表目錄 xxiii
第一章、 緒論 1
1-1 燃料電池 1
1-1-1 簡介 1
1-1-2 電池熱力學及動力學 8
1-2 電催化劑 13
1-2-1 鉑單層的需求及氧還原反應 13
1-2-2 其他催化反應及材料 18
第二章、 實驗部分 29
2-1 實驗耗材 29
2-1-1藥品 29
2-1-2氣體 29
2-1-3 金屬材、基材 30
2-2 實驗儀器 30
2-2-1 電位儀 30
2-2-2 掃描穿隧電子顯微鏡 (Scanning Tunneling Microscopy, STM) 38
2-2-3 傅立葉轉換紅外光譜儀 (Fourier Transform Infrared Spectrometer, FTIR) 52
2-2-4 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 58
2-2-5 勞厄光譜儀 (Laue X-ray Diffractometer, Laue) 64
2-2-6 電化學石英晶體微量天秤 (Electrochemical Quartz Crystal Microbalance, EQCM) 67
2-3 實驗步驟 74
2-3-1 單晶電極製備 74
2-3-2 單層鉑修飾於金(hkl) 84
2-3-3 循環伏安法實驗步驟 86
2-3-4 掃描穿隧顯微鏡實驗步驟 93
2-3-5 傅立葉紅外光譜實驗步驟 96
第三章、 一氧化碳誘導金屬沉積 98
3-1 羰化鉑陰離子於金(111)上的吸附 98
3-1-1 飽和一氧化碳鉑鹽溶液的鑑定 98
3-1-2 利用一氧化碳修飾金屬鉑於金(111) 102
3-1-3 浸泡時間與覆蓋度 108
3-1-4 羰化鉑陰離子於金(111)的吸附 116
3-1-5 [Pt47(CO)73]5-吸附於金(111)上的掃描穿隧顯微影像 121
3-1-6 飽和氫氣或氧氣對[Pt47(CO)73]5-的影響 128
3-1-7 飽和氮氣下,空氣及電位對[Pt47(CO)73]5-的影響 132
3-2-1 單層鉑於金(111)電極 137
3-2-2 R相鉑單層 140
3-2-3 莫列(Moiré structure)結構的鉑單層 143
3-2-4 一氧化碳於單層鉑的回吸 148
3-3 鉑單層上的鹵素 158
3-3-1 氯離子對鉑單層的影響 158
3-3-2 鉑單層上的碘 161
3-4 雙層鉑薄膜 163
3-4-1 吸附沉積雙層鉑 163
3-4-2氧化誘導雙層鉑 169
3-5 鉑單層於金(100) 175
3-6 一氧化碳誘導鈀沉積於金(111) 178
3-7 結論 181
第四章、 鉑膜於單晶金電極的催化性質 183
4-1 氧氣還原反應 183
4-1-1 鉑單層於金(100)、(110)及(111)的氧還原反應 183
4-1-2 覆蓋度與氧還原活性 186
4-1-3 動力學活性探討 188
4-2 氫析出/氧化反應 190
4-3 有機小分子氧化反應 195
4-3-1 甲醇、甲酸及甲醛氧化 195
4-3-2 甲醇、乙醇及乙醛氧化比較 204
4-4 結論 209
第五章、空氣下利用火焰燒結非貴金屬單晶 210
5-1 金屬氧化物生成熱力學 210
5-1-1 理論探討 210
5-1-2 空氣下燒結銅單晶 213
5-2 非貴金屬單晶 216
5-2-1 銅單晶 216
5-2-2 鎳單晶及鈷球 222
5-3銅合金單晶 226
5-4 鎳鉬合金 231
5-5 鉑三鈷(111) (Pt3Co(111)) 234
5-6 銅及其合金單晶的電化學 238
5-6-1電化學表徵 238
5-6-2 甲醛電氧化 243
5-6-3 二氧化碳於銅(111)的還原 257
5-7 全銅甲醛燃料電池 261
5-8 結論 264
第六章、總結 265
參考文獻 268
參考文獻 1. Grove, W. R., XXIV. On voltaic series and the combination of gases by platinum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1839, 14 (86-87), 127-130.
2. Chen, K.; Liu, K.; An, P.; Li, H.; Lin, Y.; Hu, J.; Jia, C.; Fu, J.; Li, H.; Liu, H.; Lin, Z.; Li, W.; Li, J.; Lu, Y.-R.; Chan, T.-S.; Zhang, N.; Liu, M., Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nature Communications 2020, 11 (1), 4173.
3. Erikson, H.; Sarapuu, A.; Tammeveski, K., Oxygen Reduction Reaction on Silver Catalysts in Alkaline Media: a Minireview. ChemElectroChem 2019, 6 (1), 73-86.
4. Cindrella, L.; Kannan, A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W.; Wertz, J., Gas diffusion layer for proton exchange membrane fuel cells—A review. Journal of Power Sources 2009, 194 (1), 146-160.
5. Kreuer, K. D., On the complexity of proton conduction phenomena. Solid State Ionics 2000, 136-137, 149-160.
6. Berg, P.; Promislow, K.; St. Pierre, J.; Stumper, J. r.; Wetton, B., Water Management in PEM Fuel Cells. J. Electrochem. Soc. 2004, 151 (3), A341.
7. Asensio, J. A.; Sánchez, E. M.; Gómez-Romero, P., Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews 2010, 39 (8), 3210-3239.
8. Oh, K.; Ju, H., Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes. International Journal of Hydrogen Energy 2015, 40 (24), 7743-7753.
9. Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy 2017, 42 (14), 9293-9314.
10. Moçotéguy, P.; Ludwig, B.; Scholta, J.; Barrera, R.; Ginocchio, S., Long Term Testing in Continuous Mode of HT-PEMFC Based H3PO4/PBI Celtec-P MEAs for μ-CHP Applications. Fuel Cells 2009, 9 (4), 325-348.
11. Fergus, J. W., Electrolytes for solid oxide fuel cells. Journal of Power Sources 2006, 162 (1), 30-40.
12. Lee, J. G.; Park, J. H.; Shul, Y. G., Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nature Communications 2014, 5 (1), 4045.
13. Chen, G.; Luo, Y.; Sun, W.; Liu, H.; Ding, Y.; Li, Y.; Geng, S.; Yu, K.; Liu, G., Electrochemical performance of a new structured low temperature SOFC with BZY electrolyte. International Journal of Hydrogen Energy 2018, 43 (28), 12765-12772.
14. Badwal, S. P. S.; Giddey, S.; Munnings, C.; Kulkarni, A., Review of Progress in High Temperature Solid Oxide Fuel Cells. Journal of the Australian Ceramics Society 2014, 50 (1), 15.
15. Hussain, S.; Yangping, L., Review of solid oxide fuel cell materials: cathode, anode, and electrolyte. Energy Transitions 2020, 4 (2), 113-126.
16. Bičáková, O.; Straka, P., Production of hydrogen from renewable resources and its effectiveness. International Journal of Hydrogen Energy 2012, 37 (16), 11563-11578.
17. van Biert, L.; Visser, K.; Aravind, P. V., A comparison of steam reforming concepts in solid oxide fuel cell systems. Applied Energy 2020, 264, 114748.
18. Emadi, M. A.; Chitgar, N.; Oyewunmi, O. A.; Markides, C. N., Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery. Applied Energy 2020, 261, 114384.
19. Wachsman, E. D.; Lee, K. T., Lowering the Temperature of Solid Oxide Fuel Cells. Science 2011, 334 (6058), 935.
20. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108 (46), 17886-17892.
21. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry 2009, 1 (7), 552-556.
22. Marković, N. M.; Grgur, B. N.; Ross, P. N., Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. J. Phys. Chem. B 1997, 101 (27), 5405-5413.
23. Kriston, A.; Xie, T.; Ganesan, P.; Popov, B. N., Analysis of the Effect of Pt Loading on Mass and Specific Activity in PEM Fuel Cells. J. Electrochem. Soc. 2013, 160 (4), F406-F412.
24. Guerin, S.; Hayden, B. E.; Lee, C. E.; Mormiche, C.; Owen, J. R.; Russell, A. E.; Theobald, B.; Thompsett, D., Combinatorial Electrochemical Screening of Fuel Cell Electrocatalysts. Journal of Combinatorial Chemistry 2004, 6 (1), 149-158.
25. Leontyev, I. N.; Belenov, S. V.; Guterman, V. E.; Haghi-Ashtiani, P.; Shaganov, A. P.; Dkhil, B., Catalytic Activity of Carbon-Supported Pt Nanoelectrocatalysts. Why Reducing the Size of Pt Nanoparticles is Not Always Beneficial. J. Phys. Chem. C 2011, 115 (13), 5429-5434.
26. Sun, Y.; Zhuang, L.; Lu, J.; Hong, X.; Liu, P., Collapse in Crystalline Structure and Decline in Catalytic Activity of Pt Nanoparticles on Reducing Particle Size to 1 nm. J. Am. Chem. Soc. 2007, 129 (50), 15465-15467.
27. Watanabe, M.; Sei, H.; Stonehart, P., The influence of platinum crystallite size on the electroreduction of oxygen. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 261 (2, Part 2), 375-387.
28. Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.; Ichikawa, S.; Haruta, M., Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation. Journal of Catalysis 2001, 202 (2), 256-267.
29. Liu, Y.; Mustain, W. E., High Stability, High Activity Pt/ITO Oxygen Reduction Electrocatalysts. J. Am. Chem. Soc. 2013, 135 (2), 530-533.
30. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 2007, 315 (5811), 493.
31. Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F. T.; Yang, H., Truncated Octahedral Pt3Ni Oxygen Reduction Reaction Electrocatalysts. J. Am. Chem. Soc. 2010, 132 (14), 4984-4985.
32. Zhang, C.; Hwang, S. Y.; Trout, A.; Peng, Z., Solid-State Chemistry-Enabled Scalable Production of Octahedral Pt–Ni Alloy Electrocatalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2014, 136 (22), 7805-7808.
33. Qin, J.; Zhang, Y.; Leng, D.; Yin, F., The enhanced activity of Pt–Ce nanoalloy for oxygen electroreduction. Scientific Reports 2020, 10 (1), 14837.
34. Hwang, S. J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J. H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S. J., Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction. J. Am. Chem. Soc. 2012, 134 (48), 19508-19511.
35. Kim, J.; Lee, Y.; Sun, S., Structurally Ordered FePt Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2010, 132 (14), 4996-4997.
36. Xiong, Y.; Xiao, L.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D., High-Loading Intermetallic Pt3Co/C Core–Shell Nanoparticles as Enhanced Activity Electrocatalysts toward the Oxygen Reduction Reaction (ORR). Chemistry of Materials 2018, 30 (5), 1532-1539.
37. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials 2007, 6 (3), 241-247.
38. Mayrhofer, K. J. J.; Arenz, M., Log on for new catalysts. Nature Chemistry 2009, 1 (7), 518-519.
39. Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I., Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352 (6281), 73.
40. Jeon, T.-Y.; Yoo, S. J.; Cho, Y.-H.; Kang, S. H.; Sung, Y.-E., Effect of de-alloying of Pt–Ni bimetallic nanoparticles on the oxygen reduction reaction. Electrochem. Commun. 2010, 12 (12), 1796-1799.
41. Wu, D.; Shen, X.; Pan, Y.; Yao, L.; Peng, Z., Platinum Alloy Catalysts for Oxygen Reduction Reaction: Advances, Challenges and Perspectives. ChemNanoMat 2020, 6 (1), 32-41.
42. Greeley, J.; Mavrikakis, M., Alloy catalysts designed from first principles. Nature Materials 2004, 3 (11), 810-815.
43. Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M.; Duan, X.; Mueller, T.; Huang, Y., High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348 (6240), 1230.
44. Kobayashi, S.; Aoki, M.; Wakisaka, M.; Kawamoto, T.; Shirasaka, R.; Suda, K.; Tryk, D. A.; Inukai, J.; Kondo, T.; Uchida, H., Atomically Flat Pt Skin and Striking Enrichment of Co in Underlying Alloy at Pt3Co(111) Single Crystal with Unprecedented Activity for the Oxygen Reduction Reaction. ACS Omega 2018, 3 (1), 154-158.
45. Bligaard, T.; Nørskov, J. K., Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim. Acta 2007, 52 (18), 5512-5516.
46. Hammer, B.; Nørskov, J. K., Theoretical surface science and catalysis—calculations and concepts. In Advances in Catalysis, Academic Press: 2000; Vol. 45, pp 71-129.
47. Jalan, V.; Taylor, E. J., Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid. J. Electrochem. Soc. 1983, 130 (11), 2299-2302.
48. Skriver, H. L.; Rosengaard, N. M., Surface energy and work function of elemental metals. Phys. Rev. B 1992, 46 (11), 7157-7168.
49. Waibel, H. F.; Kleinert, M.; Kibler, L. A.; Kolb, D. M., Initial stages of Pt deposition on Au(111) and Au(100). Electrochim. Acta 2002, 47 (9), 1461-1467.
50. Pedersen, M. Ø.; Helveg, S.; Ruban, A.; Stensgaard, I.; Lægsgaard, E.; Nørskov, J. K.; Besenbacher, F., How a gold substrate can increase the reactivity of a Pt overlayer. Surf. Sci. 1999, 426 (3), 395-409.
51. Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T.; Kondo, T., Electrochemical Epitaxial Growth of a Pt(111) Phase on an Au(111) Electrode. J. Phys. Chem. B 1997, 101 (38), 7566-7572.
52. Brankovic, S. R.; Wang, J. X.; Adžić, R. R., Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf. Sci. 2001, 474 (1), L173-L179.
53. Nutariya, J.; Fayette, M.; Dimitrov, N.; Vasiljevic, N., Growth of Pt by surface limited redox replacement of underpotentially deposited hydrogen. Electrochim. Acta 2013, 112, 813-823.
54. Liu, Y.; Gokcen, D.; Bertocci, U.; Moffat, T. P., Self-Terminating Growth of Platinum Films by Electrochemical Deposition. Science 2012, 338 (6112), 1327.
55. Liu, Y.; Hangarter, C. M.; Garcia, D.; Moffat, T. P., Self-terminating electrodeposition of ultrathin Pt films on Ni: An active, low-cost electrode for H2 production. Surf. Sci. 2015, 631, 141-154.
56. Kim, J.; Shin, D.; Rhee, C. K.; Yoon, S.-H., Formation of Single-Layered Pt Islands on Au(111) Using Irreversible Adsorption of Pt and Selective Adsorption of CO to Pt. Langmuir 2014, 30 (15), 4203-4206.
57. Brimaud, S.; Behm, R. J., Electrodeposition of a Pt Monolayer Film: Using Kinetic Limitations for Atomic Layer Epitaxy. J. Am. Chem. Soc. 2013, 135 (32), 11716-11719.
58. Liao, W.; Yau, S., Au(111)-Supported Pt Monolayer as the Most Active Electrocatalyst toward Hydrogen Oxidation and Evolution Reactions in Sulfuric Acid. J. Phys. Chem. C 2017, 121 (35), 19218-19225.
59. Liao, W.; Liao, W.; Yau, S., Carbon Monoxide Promoted Deposition of Ordered Pt Adlayer on Au(111) and Its Electrocatalytic Properties. J. Electrochem. Soc. 2015, 162 (10), H767-H773.
60. Qu, D.; Jung, C.-Y.; Lee, C.-W.; Uosaki, K., Pt Monolayer Creation on a Au Surface via an Underpotentially Deposited Cu Route. J. Phys. Chem. C 2019, 123 (5), 2872-2881.
61. Kim, Y.-G.; Kim, J. Y.; Vairavapandian, D.; Stickney, J. L., Platinum Nanofilm Formation by EC-ALE via Redox Replacement of UPD Copper:  Studies Using in-Situ Scanning Tunneling Microscopy. J. Phys. Chem. B 2006, 110 (36), 17998-18006.
62. Yuan, Q.; Takakusagi, S.; Wakisaka, Y.; Uemura, Y.; Wada, T.; Ariga, H.; Asakura, K., Polarization-dependent Total Reflection Fluorescence X-ray Absorption Fine Structure (PTRF-XAFS) Studies on the Structure of a Pt Monolayer on Au(111) Prepared by the Surface-limited Redox Replacement Reaction. Chemistry Letters 2017, 46 (8), 1250-1253.
63. Zhang, J.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R., Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angew. Chem. Int. Ed. 2005, 44 (14), 2132-2135.
64. Li, M.; Liu, P.; Adzic, R. R., Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols. J. Phys. Chem. Lett. 2012, 3 (23), 3480-3485.
65. Ahn, S. H.; Liu, Y.; Moffat, T. P., Ultrathin Platinum Films for Methanol and Formic Acid Oxidation: Activity as a Function of Film Thickness and Coverage. ACS Catal. 2015, 5 (4), 2124-2136.
66. Yuan, Q.; Doan, H. A.; Grabow, L. C.; Brankovic, S. R., Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on PtsML/Pd(100). J. Am. Chem. Soc. 2017, 139 (39), 13676-13679.
67. Li, M.; Kuttiyiel, K.; Lu, F.; Gang, O.; Adzic, R. R., Platinum Monolayer Electrocatalysts for Methanol Oxidation. J. Electrochem. Soc. 2019, 166 (7), F3300-F3304.
68. Iijima, Y.; Takahashi, Y.; Matsumoto, K. i.; Todoroki, N.; Wadayama, T., ORR Activity Enhancement of MBE-Prepared Pt Monolayer on Au Single-Crystal Substrate. ECS Transactions 2013, 50 (36), 45-55.
69. Santana, J. A.; Cruz, B.; Melendez-Rivera, J.; Rösch, N., Strain and Low-Coordination Effects on Monolayer Nanoislands of Pd and Pt on Au(111): A Comparative Analysis Based on Density Functional Results. J. Phys. Chem. C 2020, 124 (24), 13225-13230.
70. Santana, J. A.; Krüger, S.; Rösch, N., Monolayer Nanoislands of Pt on Au and Cu: A First-Principles Computational Study. J. Phys. Chem. C 2014, 118 (38), 22102-22110.
71. Tymoczko, J.; Calle-Vallejo, F.; Schuhmann, W.; Bandarenka, A. S., Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Nature Communications 2016, 7 (1), 10990.
72. Schüth, F.; Bogdanović, B.; Felderhoff, M., Light metal hydrides and complex hydrides for hydrogen storage. Chemical Communications 2004, (20), 2249-2258.
73. Singh, S. K.; Singh, A. K.; Aranishi, K.; Xu, Q., Noble-Metal-Free Bimetallic Nanoparticle-Catalyzed Selective Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage. J. Am. Chem. Soc. 2011, 133 (49), 19638-19641.
74. Navlani-García, M.; Mori, K.; Kuwahara, Y.; Yamashita, H., Recent strategies targeting efficient hydrogen production from chemical hydrogen storage materials over carbon-supported catalysts. NPG Asia Materials 2018, 10 (4), 277-292.
75. Heim, L. E.; Schlörer, N. E.; Choi, J.-H.; Prechtl, M. H. G., Selective and mild hydrogen production using water and formaldehyde. Nature Communications 2014, 5 (1), 3621.
76. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochim. Acta 2002, 47 (22), 3663-3674.
77. Rizo, R.; Lázaro, M. J.; Pastor, E.; García, G., Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1)/C and PtSn(1:1)/C Catalysts. Molecules 2016, 21 (9).
78. Sakong, S.; Groß, A., The Importance of the Electrochemical Environment in the Electro-Oxidation of Methanol on Pt(111). ACS Catal. 2016, 6 (8), 5575-5586.
79. Iwasita, T.; Xia, X., Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge. J. Electroanal. Chem. 1996, 411 (1), 95-102.
80. MacDonald, J. P.; Gualtieri, B.; Runga, N.; Teliz, E.; Zinola, C. F., Modification of platinum surfaces by spontaneous deposition: Methanol oxidation electrocatalysis. International Journal of Hydrogen Energy 2008, 33 (23), 7048-7061.
81. Wang, K.; Gasteiger, H. A.; Markovic, N. M.; Ross, P. N., On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim. Acta 1996, 41 (16), 2587-2593.
82. Chang, S.-C.; Ho, Y.; Weaver, M. J., Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces: I. Electrooxidation of formic acid and methanol on bismuth-modified Pt(111) and Pt(100). Surf. Sci. 1992, 265 (1), 81-94.
83. Crown, A.; Moraes, I. R.; Wieckowski, A., Examination of Pt(111)/Ru and Pt(111)/Os surfaces: STM imaging and methanol oxidation activity. J. Electroanal. Chem. 2001, 500 (1), 333-343.
84. Rossmeisl, J.; Ferrin, P.; Tritsaris, G. A.; Nilekar, A. U.; Koh, S.; Bae, S. E.; Brankovic, S. R.; Strasser, P.; Mavrikakis, M., Bifunctional anode catalysts for direct methanol fuel cells. Energy & Environmental Science 2012, 5 (8), 8335-8342.
85. Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H.; Wong, S. S., Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy & Environmental Science 2015, 8 (1), 350-363.
86. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials 2012, 11 (6), 550-557.
87. Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Marković, N. M., Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nature Chemistry 2010, 2 (10), 880-885.
88. Strmcnik, D.; Kodama, K.; van der Vliet, D.; Greeley, J.; Stamenkovic, V. R.; Marković, N. M., The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chemistry 2009, 1 (6), 466-472.
89. Stoffelsma, C.; Rodriguez, P.; Garcia, G.; Garcia-Araez, N.; Strmcnik, D.; Marković, N. M.; Koper, M. T. M., Promotion of the Oxidation of Carbon Monoxide at Stepped Platinum Single-Crystal Electrodes in Alkaline Media by Lithium and Beryllium Cations. J. Am. Chem. Soc. 2010, 132 (45), 16127-16133.
90. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M., Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces. Science 2011, 334 (6060), 1256.
91. Görlin, M.; Halldin Stenlid, J.; Koroidov, S.; Wang, H.-Y.; Börner, M.; Shipilin, M.; Kalinko, A.; Murzin, V.; Safonova, O. V.; Nachtegaal, M.; Uheida, A.; Dutta, J.; Bauer, M.; Nilsson, A.; Diaz-Morales, O., Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nature Communications 2020, 11 (1), 6181.
92. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I., Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317 (5834), 100.
93. Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133 (19), 7296-7299.
94. Cao, B.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G., Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135 (51), 19186-19192.
95. Deng, J.; Ren, P.; Deng, D.; Yu, L.; Yang, F.; Bao, X., Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy & Environmental Science 2014, 7 (6), 1919-1923.
96. Wang, T.; Wang, X.; Liu, Y.; Zheng, J.; Li, X., A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes. Nano Energy 2016, 22, 111-119.
97. Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C., Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Applied Catalysis B: Environmental 2016, 192, 126-133.
98. Han, N.; Yang, K. R.; Lu, Z.; Li, Y.; Xu, W.; Gao, T.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W.; Sun, X., Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications 2018, 9 (1), 924.
99. Sheng, W.; Bivens, A. P.; Myint, M.; Zhuang, Z.; Forest, R. V.; Fang, Q.; Chen, J. G.; Yan, Y., Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy & Environmental Science 2014, 7 (5), 1719-1724.
100. Yang, X.; Zhao, F.; Yeh, Y.-W.; Selinsky, R. S.; Chen, Z.; Yao, N.; Tully, C. G.; Ju, Y.; Koel, B. E., Nitrogen-plasma treated hafnium oxyhydroxide as an efficient acid-stable electrocatalyst for hydrogen evolution and oxidation reactions. Nature Communications 2019, 10 (1), 1543.
101. Ojha, K.; Arulmozhi, N.; Aranzales, D.; Koper, M. T. M., Double Layer at the Pt(111)–Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy–Chapman Screening. Angew. Chem. Int. Ed. 2020, 59 (2), 711-715.
102. Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E., Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 1982, 49 (1), 57-61.
103. Sonnenfeld, R.; Hansma, P. K., Atomic-Resolution Microscopy in Water. Science 1986, 232 (4747), 211.
104. Guise, O. L.; Ahner, J. W.; Jung, M.-C.; Goughnour, P. C.; Yates, J. T., Reproducible Electrochemical Etching of Tungsten Probe Tips. Nano Letters 2002, 2 (3), 191-193.
105. Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics 1985, 57 (3), 783-826.
106. Kuhne, C.; Steiner, G.; Fischer, W. B.; Salzer, R., Surface enhanced FTIR spectroscopy on membranes. Fresenius′ Journal of Analytical Chemistry 1998, 360 (7), 750-754.
107. Osawa, M.; Ikeda, M., Surface-enhanced infrared absorption of p-nitrobenzoic acid deposited on silver island films: contributions of electromagnetic and chemical mechanisms. The Journal of Physical Chemistry 1991, 95 (24), 9914-9919.
108. Osawa, M., Surface-Enhanced Infrared Absorption. In Near-Field Optics and Surface Plasmon Polaritons, Kawata, S., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2001; pp 163-187.
109. Nishikawa, Y.; Nagasawa, T.; Fujiwara, K.; Osawa, M., Silver island films for surface-enhanced infrared absorption spectroscopy: effect of island morphology on the absorption enhancement. Vibrational Spectroscopy 1993, 6 (1), 43-53.
110. Dumas, P.; Tobin, R. G.; Richards, P. L., Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy: I. Silver. Surf. Sci. 1986, 171 (3), 555-578.
111. Rodriguez-Pardo, L.; Fariña, J.; Gabrielli, C.; Perrot, H.; Brendel, R., Resolution in quartz crystal oscillator circuits for high sensitivity microbalance sensors in damping media. Sensors and Actuators B: Chemical 2004, 103 (1), 318-324.
112. Rodahl, M.; Kasemo, B., Frequency and dissipation-factor responses to localized liquid deposits on a QCM electrode. Sensors and Actuators B: Chemical 1996, 37 (1), 111-116.
113. Aqra, F.; Ayyad, A., Theoretical temperature-dependence surface tension of pure liquid gold. Materials Letters 2011, 65 (14), 2124-2126.
114. Wei, J.; Liao, W.-c.; Lei, J.; Yau, S.; Chen, Y.-X., Electrified Interfaces of Pt(332) and Pt(997) in Acid Containing CO and KI: As Probed by in Situ Scanning Tunneling Microscopy. J. Phys. Chem. C 2018, 122 (45), 26111-26119.
115. Ju, B.-F.; Chen, Y.-L.; Ge, Y., The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters. Review of Scientific Instruments 2011, 82 (1), 013707.
116. Kulakov, M.; Luzinov, I.; Kornev, K. G., Capillary and Surface Effects in the Formation of Nanosharp Tungsten Tips by Electropolishing. Langmuir 2009, 25 (8), 4462-4468.
117. Miyake, H.; Ye, S.; Osawa, M., Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochem. Commun. 2002, 4 (12), 973-977.
118. Niwano, M.; Kurita, K.; Takeda, Y.; Miyamoto, N., Formation of hexafluorosilicate on Si surface treated in NH4F investigated by photoemission and surface infrared spectroscopy. Applied Physics Letters 1993, 62 (9), 1003-1005.
119. Lublow, M.; Stempel, T.; Skorupska, K.; Muñoz, A. G.; Kanis, M.; Lewerenz, H. J., Morphological and chemical optimization of ex situ NH4F (40%) conditioned Si(111)-(1×1):H. Applied Physics Letters 2008, 93 (6), 062112.
120. Miki, A.; Ye, S.; Osawa, M., Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chemical Communications 2002, (14), 1500-1501.
121. Karmalkar, S.; Banerjee, J., A Study of Immersion Processes of Activating Polished Crystalline Silicon for Autocatalytic Electroless Deposition of Palladium and Other Metals. J. Electrochem. Soc. 1999, 146 (2), 580-584.
122. Henglein, F. A., Formation of a Pt-Carbonyl Colloid by Reaction of Colloidal Pt with CO. J. Phys. Chem. B 1997, 101 (31), 5889-5894.
123. Sano, I., The Action of Carbon Monoxide on Chloroplatinic Acid Solution. Bull. Chem. Soc. Jpn. 1934, 9 (8), 320-326.
124. Longoni, G.; Chini, P., Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2- (n = .apprx.10,6,5,4,3,2,1). A new series of inorganic oligomers. J. Am. Chem. Soc. 1976, 98 (23), 7225-7231.
125. Booth, G.; Chatt, J., Carbonyl and tertiary phosphine derivatives of platinum(O). Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1969, (0), 2131-2132.
126. Calabrese, J. C.; Dahl, L. F.; Chini, P.; Longoni, G.; Martinengo, S., Synthesis and structural characterization of platinum carbonyl cluster dianions bis,tris,tetrakis, or pentakis(tri-.mu.2-carbonyl-tricarbonyltriplatinum)(2-). New series of inorganic oligomers. J. Am. Chem. Soc. 1974, 96 (8), 2614-2616.
127. Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G., Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476 (7360), 308-311.
128. Kelso, M. V.; Mahenderkar, N. K.; Chen, Q.; Tubbesing, J. Z.; Switzer, J. A., Spin coating epitaxial films. Science 2019, 364 (6436), 166.
129. Nagahara, Y.; Hara, M.; Yoshimoto, S.; Inukai, J.; Yau, S.-L.; Itaya, K., In Situ Scanning Tunneling Microscopy Examination of Molecular Adlayers of Haloplatinate Complexes and Electrochemically Produced Platinum Nanoparticles on Au(111). J. Phys. Chem. B 2004, 108 (10), 3224-3230.
130. Yuan, Q.; Wakisaka, Y.; Uemura, Y.; Wada, T.; Ariga-Miwa, H.; Takakusagi, S.; Asakura, K.; Brankovic, S. R., Reaction Stoichiometry and Mechanism of Pt Deposition via Surface Limited Redox Replacement of Copper UPD Layer on Au(111). J. Phys. Chem. C 2018, 122 (29), 16664-16673.
131. Wang, D.; Cui, X.; Xiao, Q.; Hu, Y.; Wang, Z.; Yiu, Y. M.; Sham, T. K., Electronic behaviour of Au-Pt alloys and the 4f binding energy shift anomaly in Au bimetallics- X-ray spectroscopy studies. AIP Adv. 2018, 8 (6), 065210.
132. Strbac, S.; Behm, R. J.; Crown, A.; Wieckowski, A., In situ STM imaging of spontaneously deposited ruthenium on Au(111). Surf. Sci. 2002, 517 (1), 207-218.
133. Wong, Y. T.; Hoffmann, R., Chemisorption of carbon monoxide on three metal surfaces: nickel(111), palladium(111), and platinum(111): a comparative study. The Journal of Physical Chemistry 1991, 95 (2), 859-867.
134. Bonzel, H. P.; Ku, R., Mechanisms of the catalytic carbon monoxide oxidation on Pt (110). Surf. Sci. 1972, 33 (1), 91-106.
135. Zemek, J.; Olejnik, K.; Klapetek, P., Photoelectron spectroscopy from randomly corrugated surfaces. Surf. Sci. 2008, 602 (7), 1440-1446.
136. Kolb, D. M.; Schneider, J., Surface reconstruction in electrochemistry: Au(100-(5 × 20), Au(111)-(1 × 23) and Au(110)-(1 × 2). Electrochim. Acta 1986, 31 (8), 929-936.
137. Hamelin, A., Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem. 1996, 407 (1), 1-11.
138. Lebedeva, N. P.; Koper, M. T. M.; Herrero, E.; Feliu, J. M.; van Santen, R. A., Cooxidation on stepped Pt[n(111)×(111)] electrodes. J. Electroanal. Chem. 2000, 487 (1), 37-44.
139. Kondo, T.; Morita, J.; Hanaoka, K.; Takakusagi, S.; Tamura, K.; Takahasi, M.; Mizuki, J. i.; Uosaki, K., Structure of Au(111) and Au(100) Single-Crystal Electrode Surfaces at Various Potentials in Sulfuric Acid Solution Determined by In Situ Surface X-ray Scattering. J. Phys. Chem. C 2007, 111 (35), 13197-13204.
140. Huang, Y.-F.; Kooyman, P. J.; Koper, M. T. M., Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nature Communications 2016, 7 (1), 12440.
141. Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G., Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments. J. Am. Chem. Soc. 2010, 132 (2), 596-600.
142. Lopes, P. P.; Strmcnik, D.; Tripkovic, D.; Connell, J. G.; Stamenkovic, V.; Markovic, N. M., Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments. ACS Catal. 2016, 6 (4), 2536-2544.
143. Yang, L.-M.; Yau, S.-L., The Structures of Iodine and Carbon Monoxide Overlayers on Ir(111) Electrodes:  An In Situ Scanning Tunneling Microscopy Study. J. Phys. Chem. B 2000, 104 (8), 1769-1776.
144. Brankovic, S. R.; Marinkovic, N. S.; Wang, J. X.; Adžić, R. R., Carbon monoxide oxidation on bare and Pt-modified Ru(101̄0) and Ru(0001) single crystal electrodes. J. Electroanal. Chem. 2002, 532 (1), 57-66.
145. El-Aziz, A. M.; Kibler, L. A., Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111). J. Electroanal. Chem. 2002, 534 (2), 107-114.
146. Shue, C.-H.; Ou Yang, L.-Y.; Yau, S.-L.; Itaya, K., In-Situ Scanning Tunneling Microscopy of Carbon Monoxide Adsorbed on Au(111) Electrode. Langmuir 2005, 21 (5), 1942-1948.
147. Sun, S.-G.; Cai, W.-B.; Wan, L.-J.; Osawa, M., Infrared Absorption Enhancement for CO Adsorbed on Au Films in Perchloric Acid Solutions and Effects of Surface Structure Studied by Cyclic Voltammetry, Scanning Tunneling Microscopy, and Surface-Enhanced IR Spectroscopy. J. Phys. Chem. B 1999, 103 (13), 2460-2466.
148. Blizanac, B. B.; Arenz, M.; Ross, P. N.; Marković, N. M., Surface Electrochemistry of CO on Reconstructed Gold Single Crystal Surfaces Studied by Infrared Reflection Absorption Spectroscopy and Rotating Disk Electrode. J. Am. Chem. Soc. 2004, 126 (32), 10130-10141.
149. Yan, Y.-G.; Yang, Y.-Y.; Peng, B.; Malkhandi, S.; Bund, A.; Stimming, U.; Cai, W.-B., Study of CO Oxidation on Polycrystalline Pt Electrodes in Acidic Solution by ATR-SEIRAS. J. Phys. Chem. C 2011, 115 (33), 16378-16388.
150. Akemann, W.; Friedrich, K. A.; Stimming, U., Potential-dependence of CO adlayer structures on Pt(111) electrodes in acid solution: Evidence for a site selective charge transfer. The Journal of Chemical Physics 2000, 113 (16), 6864-6874.
151. Wu, Q.-H.; Sun, S.-G.; Xiao, X.-Y.; Yang, Y.-Y.; Zhou, Z.-Y., An EQCM study of Sb adsorption and coadsorption with CO on Pt electrode in perchloric acid solutions. Electrochim. Acta 2000, 45 (22), 3683-3690.
152. Tao, F.; Dag, S.; Wang, L.-W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A., Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage. Science 2010, 327 (5967), 850.
153. Apai, G.; Lee, S. T.; Mason, M. G.; Gerenser, L. J.; Gardner, S. A., X-ray photoemission study of platinum carbonyl dianions [Pt3(CO)6]n2-(n = 2,3,4,5,6, .apprx. 10). J. Am. Chem. Soc. 1979, 101 (23), 6880-6883.
154. Echegoyen, L.; Echegoyen, L. E., Electrochemistry of Fullerenes and Their Derivatives. Acc. Chem. Res. 1998, 31 (9), 593-601.
155. Narasimhan, S.; Vanderbilt, D., Elastic stress domains and the herringbone reconstruction on Au(111). Physical Review Letters 1992, 69 (10), 1564-1567.
156. Wöll, C.; Chiang, S.; Wilson, R. J.; Lippel, P. H., Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 1989, 39 (11), 7988-7991.
157. Kolb, D. M.; Dakkouri, A. S.; Batina, N., The Surface Structure of Gold Single-Crystal Electrodes. In Nanoscale Probes of the Solid/Liquid Interface, Gewirth, A. A.; Siegenthaler, H., Eds. Springer Netherlands: Dordrecht, 1995; pp 263-284.
158. Bott, M.; Hohage, M.; Michely, T.; Comsa, G., Pt(111) reconstruction induced by enhanced Pt gas-phase chemical potential. Physical Review Letters 1993, 70 (10), 1489-1492.
159. Deák, R.; Néda, Z., Kinetic Monte Carlo approach for triangular-shaped Pt islands on Pt(111) surfaces. Phys. Status Solidi B 2012, 249 (9), 1709-1716.
160. Villegas, I.; Weaver, M. J., Carbon monoxide adlayer structures on platinum (111) electrodes: A synergy between in‐situ scanning tunneling microscopy and infrared spectroscopy. The Journal of Chemical Physics 1994, 101 (2), 1648-1660.
161. Wei, J.; Amirbeigiarab, R.; Chen, Y.-X.; Sakong, S.; Gross, A.; Magnussen, O. M., The Dynamic Nature of CO Adlayers on Pt(111) Electrodes. Angew. Chem. Int. Ed. 2020, 59 (15), 6182-6186.
162. Calleja, F.; Arnau, A.; Hinarejos, J. J.; Vázquez de Parga, A. L.; Hofer, W. A.; Echenique, P. M.; Miranda, R., Contrast Reversal and Shape Changes of Atomic Adsorbates Measured with Scanning Tunneling Microscopy. Physical Review Letters 2004, 92 (20), 206101.
163. Kopatzki, E.; Behm, R. J., STM imaging and local order of oxygen adlayers on Ni(100). Surf. Sci. 1991, 245 (3), 255-262.
164. Morgan, A. E.; Somorjai, G. A., Low‐Energy Electron‐Diffraction Studies of the Adsorption of Unsaturated Hydrocarbons and Carbon Monoxide on the Platinum (111) and (100) Single‐Crystal Surfaces. The Journal of Chemical Physics 1969, 51 (8), 3309-3320.
165. Luo, L.; Engelhard, M. H.; Shao, Y.; Wang, C., Revealing the Dynamics of Platinum Nanoparticle Catalysts on Carbon in Oxygen and Water Using Environmental TEM. ACS Catal. 2017, 7 (11), 7658-7664.
166. Bürgi, L.; Brune, H.; Kern, K., Imaging of Electron Potential Landscapes on Au(111). Physical Review Letters 2002, 89 (17), 176801.
167. Shibata, M.; Hayashi, N.; Sakurai, T.; Kurokawa, A.; Fukumitsu, H.; Masuda, T.; Uosaki, K.; Kondo, T., Electrochemical Layer-by-Layer Deposition of Pseudomorphic Pt Layers on Au(111) Electrode Surface Confirmed by Electrochemical and In Situ Resonance Surface X-ray Scattering Measurements. J. Phys. Chem. C 2012, 116 (50), 26464-26474.
168. Crommie, M. F.; Lutz, C. P.; Eigler, D. M., Confinement of Electrons to Quantum Corrals on a Metal Surface. Science 1993, 262 (5131), 218.
169. Stilp, F.; Bereczuk, A.; Berwanger, J.; Mundigl, N.; Richter, K.; Giessibl, F. J., Very weak bonds to artificial atoms formed by quantum corrals. Science 2021, 372 (6547), 1196.
170. Casimir, H. B. G.; Polder, D., The Influence of Retardation on the London-van der Waals Forces. Physical Review 1948, 73 (4), 360-372.
171. Lambrecht, A., Electromagnetic pulses from an oscillating high-finesse cavity: possible signatures for dynamic Casimir effect experiments. Journal of Optics B: Quantum and Semiclassical Optics 2005, 7 (3), S3-S10.
172. Kibler, L. A.; Kleinert, M.; Randler, R.; Kolb, D. M., Initial stages of Pd deposition on Au(hkl) Part I: Pd on Au(111). Surf. Sci. 1999, 443 (1), 19-30.
173. Dovek, M. M.; Lang, C. A.; Nogami, J.; Quate, C. F., Epitaxial growth of Ag on Au(111) studied by scanning tunneling microscopy. Phys. Rev. B 1989, 40 (17), 11973-11975.
174. Chang, S. C.; Weaver, M. J., Coverage‐dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)‐aqueous interfaces: Structural and electrochemical implications. The Journal of Chemical Physics 1990, 92 (7), 4582-4594.
175. Bergelin, M.; Feliu, J. M.; Wasberg, M., Study of carbon monoxide adsorption and oxidation on Pt(111) by using an electrochemical impinging jet cell. Electrochim. Acta 1998, 44 (6), 1069-1075.
176. Chen, W. C.; Yau, S. 利用掃描式電子穿隧顯微鏡觀察一氧化碳分子在釕、錫修飾過的鉑(111)電極上的電氧化現象. National Central University, 2012.
177. Pushpa, R.; Narasimhan, S., Reconstruction of Pt(111) and domain patterns on close-packed metal surfaces. Phys. Rev. B 2003, 67 (20), 205418.
178. Pfisterer, J. H. K.; Liang, Y.; Schneider, O.; Bandarenka, A. S., Direct instrumental identification of catalytically active surface sites. Nature 2017, 549 (7670), 74-77.
179. Kuo, Y.; Yen, P.; Chen, W.; Chen, S.; Yau, S., In situ scanning tunneling microscopy study of cobalt thin film electrodeposited on Pt(111) electrode. Electrochim. Acta 2013, 112, 831-837.
180. Chen, W.; Yen, P.; Kuo, Y.; Chen, S.; Yau, S., Epitaxial Electrodeposition of Nickel on Pt(111) Electrode. J. Phys. Chem. C 2012, 116 (40), 21343-21349.
181. Allongue, P.; Cagnon, L.; Gomes, C.; Gündel, A.; Costa, V., Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surf. Sci. 2004, 557 (1), 41-56.
182. Wilms, M.; Broekmann, P.; Stuhlmann, C.; Wandelt, K., In-situ STM investigation of adsorbate structures on Cu(111) in sulfuric acid electrolyte. Surf. Sci. 1998, 416 (1), 121-140.
183. Kuo, Y.; Liao, W.; Yau, S., Effects of Anions on the Electrodeposition of Cobalt on Pt(111) Electrode. Langmuir 2014, 30 (46), 13890-13897.
184. Feibelman, P. J., First-principles calculations of stress induced by gas adsorption on Pt(111). Phys. Rev. B 1997, 56 (4), 2175-2182.
185. Wintterlin, J.; Völkening, S.; Janssens, T. V. W.; Zambelli, T.; Ertl, G., Atomic and Macroscopic Reaction Rates of a Surface-Catalyzed Reaction. Science 1997, 278 (5345), 1931.
186. Gross, L.; Moll, N.; Mohn, F.; Curioni, A.; Meyer, G.; Hanke, F.; Persson, M., High-Resolution Molecular Orbital Imaging Using a p-Wave STM Tip. Physical Review Letters 2011, 107 (8), 086101.
187. Henß, A.-K.; Sakong, S.; Messer, P. K.; Wiechers, J.; Schuster, R.; Lamb, D. C.; Groß, A.; Wintterlin, J., Density fluctuations as door-opener for diffusion on crowded surfaces. Science 2019, 363 (6428), 715.
188. Magnussen, O. M., Moving through the crowd. Science 2019, 363 (6428), 695.
189. Gossenberger, F.; Roman, T.; Groß, A., Hydrogen and halide co-adsorption on Pt(111) in an electrochemical environment: a computational perspective. Electrochim. Acta 2016, 216, 152-159.
190. Song, M. B.; Ito, M., STM observation of Pt[111](3x3)-Cl and c(4x2)-Cl structures. Bulletin of the Korean Chemical Society 2001, 22 (3), 267-270.
191. Fukushima, T.; Song, M.-B.; Ito, M., Local work-function changes of Pt(111) studied by STM and IRAS: coadsorption of Cl− with H3O+, NO, and CO molecules. Surf. Sci. 2000, 464 (2), 193-199.
192. Ye, S.; Ishibashi, C.; Uosaki, K., Anisotropic Dissolution of an Au(111) Electrode in Perchloric Acid Solution Containing Chloride Anion Investigated by in Situ STMThe Important Role of Adsorbed Chloride Anion. Langmuir 1999, 15 (3), 807-812.
193. Batina, N.; Yamada, T.; Itaya, K., Atomic Level Characterization of the Iodine-Modified Au(111) Electrode Surface in Perchloric Acid Solution by in-Situ STM and ex-Situ LEED. Langmuir 1995, 11 (11), 4568-4576.
194. Yamada, T.; Batina, N.; Itaya, K., Interfacial structure of iodine electrodeposited on Au(111): studies by LEED and in situ STM. Surf. Sci. 1995, 335, 204-209.
195. Itaya, K., In situ scanning tunneling microscopy in electrolyte solutions. Progress in Surface Science 1998, 58 (3), 121-247.
196. Frank, D. G.; Chyan, O. M. R.; Golden, T.; Hubbard, A. T., Probing three distinct iodine monolayer structures at platinum (111) by means of angular distribution Auger microscopy: results agree with scanning tunneling microscopy. The Journal of Physical Chemistry 1993, 97 (15), 3829-3837.
197. Lu, F.; Salaita, G. N.; Baltruschat, H.; Hubbard, A. T., Adlattice structure and hydrophobicity of Pt (111) in aqueous potassium iodide solutions: Influence of pH and electrode potential. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1987, 222 (1), 305-320.
198. Schardt, B. C.; Yau, S.-L.; Rinaldi, F., Atomic Resolution Imaging of Adsorbates on Metal Surfaces in Air: Iodine Adsorption on Pt(111). Science 1989, 243 (4894), 1050.
199. Zhu, Z.; Tao, F.; Zheng, F.; Chang, R.; Li, Y.; Heinke, L.; Liu, Z.; Salmeron, M.; Somorjai, G. A., Formation of Nanometer-Sized Surface Platinum Oxide Clusters on a Stepped Pt(557) Single Crystal Surface Induced by Oxygen: A High-Pressure STM and Ambient-Pressure XPS Study. Nano Letters 2012, 12 (3), 1491-1497.
200. Hüfner, S.; Wertheim, G. K.; Wernick, J. H., XPS core line asymmetries in metals. Solid State Communications 1975, 17 (4), 417-422.
201. Citrin, P. H.; Wertheim, G. K.; Baer, Y., Core-Level Binding Energy and Density of States from the Surface Atoms of Gold. Physical Review Letters 1978, 41 (20), 1425-1428.
202. Choi, S.-J.; Park, S.-M., Electrochemistry of Conductive Polymers. XXVI. Effects of Electrolytes and Growth Methods on Polyaniline Morphology. J. Electrochem. Soc. 2002, 149 (2), E26.
203. Jacobse, L.; Huang, Y.-F.; Koper, M. T. M.; Rost, M. J., Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). Nature Materials 2018, 17 (3), 277-282.
204. Trasatti, S.; Petrii, O. A., Real surface area measurements in electrochemistry. Pure and Applied Chemistry 1991, 63 (5), 711-734.
205. Michaelson, H. B., The work function of the elements and its periodicity. Journal of Applied Physics 1977, 48 (11), 4729-4733.
206. Watanabe, M.; Motoo, S., Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1975, 60 (3), 267-273.
207. Tempas, C. D.; Skomski, D.; Tait, S. L., Lifting of the Au(100) surface reconstruction by Pt, Cr, Fe, and Cu adsorption. Surf. Sci. 2016, 654, 33-38.
208. Randler, R. J.; Kolb, D. M.; Ocko, B. M.; Robinson, I. K., Electrochemical copper deposition on Au(100): a combined in situ STM and in situ surface X-ray diffraction study. Surf. Sci. 2000, 447 (1), 187-200.
209. Fedoseev, I. V.; Shevelkov, A. V.; Vasekin, V. V.; Poyarkov, K. B.; Rovinskaya, N. V., Formation and Destruction of Palladium Carbonyl Nanoclusters in the Pd(II)–Cl––H+–H2O–CO Systems. Russian Journal of Inorganic Chemistry 2020, 65 (2), 161-168.
210. Tang, J.; Petri, M.; Kibler, L. A.; Kolb, D. M., Pd deposition onto Au(111) electrodes from sulphuric acid solution. Electrochim. Acta 2005, 51 (1), 125-132.
211. Hara, M.; Linke, U.; Wandlowski, T., Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1M H2SO4 and HClO4: Part I. Low-index phases. Electrochim. Acta 2007, 52 (18), 5733-5748.
212. Wokaun, A., Surface-Enhanced Electromagnetic Processes. In Solid State Physics, Ehrenreich, H.; Turnbull, D.; Seitz, F., Eds. Academic Press: 1984; Vol. 38, pp 223-294.
213. Marković, N. M.; Gasteiger, H. A.; Grgur, B. N.; Ross, P. N., Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 1999, 467 (1), 157-163.
214. Štrbac, S.; Anastasijević, N. A.; Adžić, R. R., Oxygen reduction on Au(111) and vicinal Au(332) faces: A rotating disc and disc-ring study. Electrochim. Acta 1994, 39 (7), 983-990.
215. Kondo, T.; Song, C.; Hayashi, N.; Sakurai, T.; Shibata, M.; Notsu, H.; Yagi, I., Electrocatalytic Activity for Oxygen Reduction Reaction of Pseudomorphic Pt Monolayer Prepared Electrochemically on a Au(111) Surface. Chemistry Letters 2011, 40 (11), 1235-1237.
216. Zorko, M.; Farinazzo Bergamo Dias Martins, P.; Connell, J. G.; Lopes, P. P.; Markovic, N. M.; Stamenkovic, V. R.; Strmcnik, D., Improved Rate for the Oxygen Reduction Reaction in a Sulfuric Acid Electrolyte using a Pt(111) Surface Modified with Melamine. ACS Applied Materials & Interfaces 2021, 13 (2), 3369-3376.
217. Wakisaka, M.; Kobayashi, S.; Morishima, S.; Hyuga, Y.; Tryk, D. A.; Watanabe, M.; Iiyama, A.; Uchida, H., Unprecedented dependence of the oxygen reduction activity on Co content at Pt Skin/Pt–Co(111) single crystal electrodes. Electrochem. Commun. 2016, 67, 47-50.
218. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324 (5932), 1302.
219. Henry, J. B.; Maljusch, A.; Huang, M.; Schuhmann, W.; Bondarenko, A. S., Thin-Film Cu–Pt(111) Near-Surface Alloys: Active Electrocatalysts for the Oxygen Reduction Reaction. ACS Catal. 2012, 2 (7), 1457-1460.
220. Markovic, N. M.; Gasteiger, H. A.; Ross, P. N., Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Sulfuric Acid Solution: Rotating Ring-Pt(hkl) Disk Studies. The Journal of Physical Chemistry 1995, 99 (11), 3411-3415.
221. Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1972, 39 (1), 163-184.
222. Kibler, L. A.; El-Aziz, A. M.; Hoyer, R.; Kolb, D. M., Tuning Reaction Rates by Lateral Strain in a Palladium Monolayer. Angew. Chem. Int. Ed. 2005, 44 (14), 2080-2084.
223. Kibler, L. A., Dependence of electrocatalytic activity on film thickness for the hydrogen evolution reaction of Pd overlayers on Au(111). Electrochim. Acta 2008, 53 (23), 6824-6828.
224. Mavrikakis, M.; Hammer, B.; Nørskov, J. K., Effect of Strain on the Reactivity of Metal Surfaces. Physical Review Letters 1998, 81 (13), 2819-2822.
225. Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K., Surface electronic structure and reactivity of transition and noble metals1Communication presented at the First Francqui Colloquium, Brussels, 19–20 February 1996.1. Journal of Molecular Catalysis A: Chemical 1997, 115 (3), 421-429.
226. Lebedeva, N. P.; Rodes, A.; Feliu, J. M.; Koper, M. T. M.; van Santen, R. A., Role of Crystalline Defects in Electrocatalysis:  CO Adsorption and Oxidation on Stepped Platinum Electrodes As Studied by in situ Infrared Spectroscopy. J. Phys. Chem. B 2002, 106 (38), 9863-9872.
227. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L., Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science 2007, 316 (5825), 732.
228. Zhan, D.; Velmurugan, J.; Mirkin, M. V., Adsorption/Desorption of Hydrogen on Pt Nanoelectrodes: Evidence of Surface Diffusion and Spillover. J. Am. Chem. Soc. 2009, 131 (41), 14756-14760.
229. Wolfschmidt, H.; Weingarth, D.; Stimming, U., Enhanced Reactivity for Hydrogen Reactions at Pt Nanoislands on Au(111). ChemPhysChem 2010, 11 (7), 1533-1541.
230. Farias, M. J. S.; Herrero, E.; Feliu, J. M., Site Selectivity for CO Adsorption and Stripping on Stepped and Kinked Platinum Surfaces in Alkaline Medium. J. Phys. Chem. C 2013, 117 (6), 2903-2913.
231. Lai, S. C. S.; Koper, M. T. M., Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discussions 2009, 140 (0), 399-416.
232. Barbosa, A. F. B.; Del Colle, V.; Previdello, B. A. F.; Tremiliosi-Filho, G., Electrooxidation of Acetaldehyde on Pt(111) Surface Modified by Random Defects and Tin Decoration. Electrocatalysis 2021, 12 (1), 36-44.
233. Schuett, F. M.; Esau, D.; Varvaris, K. L.; Gelman, S.; Björk, J.; Rosen, J.; Jerkiewicz, G.; Jacob, T., Controlled-Atmosphere Flame Fusion Single-Crystal Growth of Non-Noble fcc, hcp, and bcc Metals Using Copper, Cobalt, and Iron. Angew. Chem. Int. Ed. 2020, 59 (32), 13246-13252.
234. Le, H.; Nayak, S.; Mannan, M. S., Upper Flammability Limits of Hydrogen and Light Hydrocarbons in Air at Subatmospheric Pressures. Industrial & Engineering Chemistry Research 2012, 51 (27), 9396-9402.
235. Holmstedt, G. S., The upper limit of flammability of hydrogen in air, oxygen, and oxygen-inert mixtures at elevated pressures. Combustion and Flame 1971, 17 (3), 295-301.
236. Zhang, J.-M.; Ma, F.; Xu, K.-W., Calculation of the surface energy of FCC metals with modified embedded-atom method. Applied Surface Science 2004, 229 (1), 34-42.
237. Schramm, L.; Behr, G.; Löser, W.; Wetzig, K., Thermodynamic reassessment of the Cu-O phase diagram. Journal of Phase Equilibria and Diffusion 2005, 26 (6), 605-612.
238. Tougaard, S.; Jansson, C., Comparison of validity and consistency of methods for quantitative XPS peak analysis. Surface and Interface Analysis 1993, 20 (13), 1013-1046.
239. Rhodin, T. N., Low Temperature Oxidation of Copper. I. Physical Mechanism1a. J. Am. Chem. Soc. 1950, 72 (11), 5102-5106.
240. Anderson, M. P.; Grest, G. S.; Srolovitz, D. J., Computer simulation of normal grain growth in three dimensions. Philosophical Magazine B 1989, 59 (3), 293-329.
241. Wu, Z.; Bei, H.; Otto, F.; Pharr, G. M.; George, E. P., Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 2014, 46, 131-140.
242. Wu, S.-Y.; Lin, Y.-C.; Ho, J.-J., Reaction of NO on Ni−Pt Bimetallic Surfaces Investigated with Theoretical Calculations. J. Phys. Chem. C 2011, 115 (15), 7538-7544.
243. Hernnäs, B.; Karolewski, M.; Tillborg, H.; Nilsson, A.; Mårtensson, N., On the growth of Ni on Cu(100). Surf. Sci. 1994, 302 (1), 64-72.
244. Nishizawa, T.; Ishida, K., The Co−Cu (Cobalt-Copper) system. Bulletin of Alloy Phase Diagrams 1984, 5 (2), 161-165.
245. Okamoto, H., Mo-ni (molybdenum-nickel). Journal of Phase Equilibria 1991, 12 (6), 703-703.
246. deVries, J. E.; Yao, H. C.; Baird, R. J.; Gandhi, H. S., Characterization of molybdenum-platinum catalysts supported on γ-alumina by X-ray photoelectron spectroscopy. Journal of Catalysis 1983, 84 (1), 8-14.
247. Wakisaka, M.; Hyuga, Y.; Abe, K.; Uchida, H.; Watanabe, M., Facile preparation and electrochemical behavior of Pt100−xCox(111) single-crystal electrodes in 0.1M HClO4. Electrochem. Commun. 2011, 13 (4), 317-320.
248. Klement, W.; Willens, R. H.; Duwez, P. O. L., Non-crystalline Structure in Solidified Gold–Silicon Alloys. Nature 1960, 187 (4740), 869-870.
249. Robinson, K. M.; O′Grady, W. E., X-ray diffraction and electrochemical study on the oxidation of flame-annealed Au(100) single-crystal surfaces. J. Electroanal. Chem. 1995, 384 (1), 139-144.
250. Dai, S.; You, Y.; Zhang, S.; Cai, W.; Xu, M.; Xie, L.; Wu, R.; Graham, G. W.; Pan, X., In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles. Nature Communications 2017, 8 (1), 204.
251. Hedin, A.; Johansson, A. J.; Lilja, C.; Boman, M.; Berastegui, P.; Berger, R.; Ottosson, M., Corrosion of copper in pure O2-free water? Corrosion Science 2018, 137, 1-12.
252. Kunze-Liebhäuser, J., Electrochemical Scanning Tunneling Microscopy Studies of Copper Oxide Formation—A Review. In Encyclopedia of Interfacial Chemistry, Wandelt, K., Ed. Elsevier: Oxford, 2018; pp 107-120.
253. Kang, M.; Gewirth, A. A., Voltammetric and Force Spectroscopic Examination of Oxide Formation on Cu(111) in Basic Solution. J. Phys. Chem. B 2002, 106 (47), 12211-12220.
254. Wouda, P. T.; Nieuwenhuys, B. E.; Schmid, M.; Varga, P., Chemically resolved STM on a PtRh(100) surface. Surf. Sci. 1996, 359 (1), 17-22.
255. Wouda, P. T.; Schmid, M.; Nieuwenhuys, B. E.; Varga, P., STM study of the (111) and (100) surfaces of PdAg. Surf. Sci. 1998, 417 (2), 292-300.
256. Enyo, M., Electrooxidation of formaldehyde on Cu + Ni alloy electrodes in alkaline solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 201 (1), 47-59.
257. Bindra, P.; Roldan, J., Mechanisms of Electroless Metal Plating : II . Formaldehyde Oxidation. J. Electrochem. Soc. 1985, 132 (11), 2581-2589.
258. Anastasijevic, N. A.; Baltruschat, H.; Heitbaum, J., On the hydrogen evolution during the electrochemical oxidation of aldehydes at Ib metals. Electrochim. Acta 1993, 38 (8), 1067-1072.
259. van den Meerakker, J. E. A. M.; de Bakker, J. W. G., On the mechanism of electroless plating. Part 3. Electroless copper alloys. Journal of Applied Electrochemistry 1990, 20 (1), 85-90.
260. Bindra, P.; Light, D.; Molla, J., The effect of pH on the electrocatalytic properties of adsorbed metal ions. Electrochim. Acta 1991, 36 (3), 529-536.
261. Hahn, C.; Hatsukade, T.; Kim, Y.-G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F., Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences 2017, 114 (23), 5918.
262. Chou, T.-C.; Chang, C.-C.; Yu, H.-L.; Yu, W.-Y.; Dong, C.-L.; Velasco-Vélez, J.-J.; Chuang, C.-H.; Chen, L.-C.; Lee, J.-F.; Chen, J.-M.; Wu, H.-L., Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene. J. Am. Chem. Soc. 2020, 142 (6), 2857-2867.
263. Li, C. W.; Kanan, M. W., CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films. J. Am. Chem. Soc. 2012, 134 (17), 7231-7234.
指導教授 姚學麟 審核日期 2021-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明