博碩士論文 109223019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.116.20.55
姓名 林浩瑋(Hao-Wei Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 快速蝕刻中空類沸石咪唑骨架材料應用於酵素固定化之研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) 本實驗室於 2015 年利用原位創新合成法 (de novo approach) ,成功以類沸石咪唑骨架材料-90 (Zeolitic Imidazolate Framework-90;ZIF-90) 包覆酵素。ZIF-90 提供內部酵素孔洞篩選性,使小於窗口大小之反應物 (Substrate) 能進入材料供酵素催化,而大於窗口之蛋白質水解酶-K 則無法通過並水解酵素。此外,ZIF-90 還可提供空間侷限性質,防止酵素在高熱或具有尿素環境下展開,使酵素能夠在嚴苛條件下進行催化反應。然而,酵素固定化往往使材料與酵素間產生相互作用,使酵素脫離原始狀態,造成活性下降;因此,本實驗室於2020年將酵素包覆於 MOFs 的不同種形態──中空金屬有機骨架材料 (Hollow MOFs;HMOFs) 中。因其擁有內部空腔,酵素結構得以獲得足夠空間,雖然會失去空間侷限性的優點,但 HMOFs 不僅改善酵素被固定後所造成的活性下降問題,且仍保有 MOFs 孔洞篩選的特性。但原先的在蝕刻步驟需要較長時間 (20 hr),就固定酵素而言,若能縮短合成時間,則可以降低酵素的自然崩解對催化效率的影響;本實驗採用兩種不同的蝕刻方法,分別為添加蝕刻劑單寧酸崩解而得的 enzyme@HZIF-90-ZnTA,以及運用 MOFs 對氫離子配位能力差異,崩解 enzyme@ZIF-67@ZIF-8 內層ZIF-67所合成的 enzyme@HZIF-8,兩者皆能快速完成蝕刻步驟,以降低酵素自然降解的影響,使 HMOFs 於酵素固定化上有更良好的活性表現。
摘要(英) In 2015, our laboratory successfully embeded enzymes in zeolitic imidazolate framework-90 (ZIF-90), a sub group of Metal-organic Frameworks (MOF), via mild water-based de novo approach. ZIF-90 provides internal enzyme size-selective sheltering which makes substrates smaller than the aperture delivery into MOF materials for enzymatic catalysis. By contrast, larger proteins, like proteinase K, which is an enzyme that catalyzes proteolysis to digest proteins into smaller polypeptides or single amino acids, cannot pass through to digest the enzyme. In addition, ZIF-90 can also provide shielding confinement properties against enzyme unfolding under high temperatures or urea environments. Thus, the enzyme can remain its functions under severe conditions. However, there are always interactions between the material and the enzyme after the enzyme immobilization process, which alters the enzymes from their native states, resulting in the decrease in activity. To solve this problem, in 2020, our laboratory embed enzymes in one of different forms of MOFs, which calls hollow metal-organic frameworks (HMOFs). Everything has its pros and cons. In advantages, using HMOFs not only improves the problem of decreased activity caused by the enzyme immobilization but also remains the characteristic of MOFs size-selective sheltering. Although it will lose the shielding confinement properties, the enzyme structure can have more space due to HMOFs with more freedom flexibility. In disadvantages, the original etching steps (hollowing steps) take longer time for about 20 hours. For enzymes, the less synthesis time, the less catalytic efficiency caused by nature decay will be reduced.
Therefore, we use two different approaches to accelerate synthetic processes. One is to add tannic acid as an etching agent to form the enzyme@HZIF -90-ZnTA, and the other one is to decompose the inner ZIF-67 structure of enzyme @ ZIF-67 @ ZIF-8 by different coordination abilities of the hydrogen ion between two MOFs to synthesize enzyme@HZIF-8. Both of them can quickly complete the etching steps to reduce the impact of natural enzyme decay, so that HMOFs can have the better activity performance on enzyme immobilization.
關鍵字(中) ★ 金屬有機骨架材料
★ 類沸石咪唑骨架材料
★ 酵素固定化
關鍵字(英) ★ metal-organic frameworks
★ zeolitic imidazolate frameworks
★ enzyme immobilization
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-2 類沸石咪唑骨架材料 4
1-3 固定化酵素 (Immobilized enzyme) 6
1-4 過氧化氫酶 7
1-5 研究動機與目的 9
第二章 實驗部分 11
2-1 實驗藥品與設備 11
2-1-1 實驗藥品 11
2-1-2 實驗使用儀器 14
2-1-3 實驗鑑定儀器 15
2-2 實驗儀器與方法 16
2-2-1 X射線粉末繞射儀 (Powder X-ray Diffractometer;PXRD) 16
2-2-2 紫外光可見光分光光譜儀 (UV/VIS Spectrophotometer) 18
2-2-3場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope;SEM) 19
2-2-4 穿透式電子顯微鏡 (Transmission Electron Microscope; TEM) 21
2-2-5 熱重量分析儀 (Thermogravimetric Analyzer;TGA) 22
2-2-6微孔洞及表面機分析儀 (Micropore Size and Surface Area Analyzer) 23
2-2-7螢光光譜儀 (Fluorescence Spectrometer;FL) 25
2-2-8十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (SDS-PAGE) 27
2-3 實驗步驟 29
2-3-1 ZIF-90 包覆過氧化氫酶 (CAT@ZIF-90) 之合成 29
2-3-2 HZIF-90 包覆過氧化氫酶 (CAT@HZIF-90-ZnTA) 之合成 30
2-3-3 ZIF-67 與 ZIF-8 雙層結構包覆過氧化氫酶 (CAT@ZIF-67@ZIF-8) 之合成 31
2-3-4 快速蝕刻合成中空類沸石咪骨架材料-包覆過氧化氫酶 (CAT@HZIF-8) 之合成 32
2-3-5 偵測蛋白質濃度 (Bradford Assay) 33
2-3-6 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation-Xylenol orange assay;FOX assay) 35
第三章 結果與討論 37
3-1 CAT@HZIF-90-ZnTA 37
3-1-1 CAT@HZIF-90-ZnTA 之 X 射線粉末繞射圖譜鑑定 37
3-1-2 CAT@HZIF-90-ZnTA 之掃描式電子顯微鏡影像分析 38
3-1-3 CAT@HZIF-90-ZnTA 之穿透式電子顯微鏡影像分析 39
3-1-4 CAT@HZIF-90-ZnTA 之氮氣吸脫附及 BET 理論計算 40
3-1-5 CAT@HZIF-90-ZnTA 之熱重分析實驗探討 41
3-1-6 CAT@HZIF-90-ZnTA 之活性探討 42
3-1-7 CAT@HZIF-90-ZnTA 浸泡展開液 Urea 之活性變化 43
3-1-8 單寧酸減量蝕刻CAT@HZIF-90-ZnTA之X射線粉末繞射圖譜鑑定 44
3-1-9 單寧酸減量蝕刻 CAT@HZIF-90-ZnTA 之掃描式電子顯微鏡影像分析 45
3-1-10 單寧酸減量蝕刻 CAT@HZIF-90-ZnTA 之穿透式電子顯微鏡影像分析 46
3-1-11 單寧酸減量蝕刻 CAT@HZIF-90-ZnTA 之活性測定 47
3-2 酸性條件快速蝕刻之 CAT@HZIF-8 48
3-2-1 酸性條件快速蝕刻 CAT@HZIF-8 之 X 射線粉末繞射圖譜鑑定 48
3-2-2酸性條件快速蝕刻 CAT@HZIF-8 之掃描式電子顯微鏡影像分析 50
3-2-3 MES 緩衝液快速蝕刻 CAT@HZIF-8 之 X 射線粉末繞射圖譜分析 51
3-2-4 MES 緩衝液快速蝕刻 CAT@HZIF-8 之掃描式電子顯微鏡影像分析 52
3-2-5 MES緩衝液快速蝕刻CAT@HZIF-8之穿透式電子顯微鏡影像分析 53
3-2-6 CAT@HZIF-8 之熱重分析實驗探討 54
3-2-7 CAT@HZIF-8 之膠體電泳實驗 55
3-2-8 CAT@HZIF-8 之活性測定 56
3-2-9 CAT@HZIF-8 浸泡蛋白水解酶-K 與展開液 Urea 對活性表現之影響 57
3-2-10 CAT@HZIF-8 浸泡展開液 Urea 之光激發螢光頻譜 58
第四章 結論及未來展望 61
參考文獻 63
參考文獻 參考文獻
1. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
2. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem Rev 2012, 112 (2), 1196-231.
3. Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q., Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem Rev 2012, 112 (2), 703-23.
4. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C., Metal-organic frameworks in biomedicine. Chem Rev 2012, 112 (2), 1232-68.
5. Betard, A.; Fischer, R. A., Metal-organic framework thin films: from fundamentals to applications. Chem Rev 2012, 112 (2), 1055-83.
6. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal-organic framework materials as chemical sensors. Chem Rev 2012, 112 (2), 1105-25.
7. Li, J. R.; Sculley, J.; Zhou, H. C., Metal-organic frameworks for separations. Chem Rev 2012, 112 (2), 869-932.
8. Yoon, M.; Suh, K.; Natarajan, S.; Kim, K., Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew Chem Int Ed Engl 2013, 52 (10), 2688-700.
9. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
10. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 2015, 87 (9-10), 1051-1069.
11. Furukawa, H.; Cordova, K. E.; O′Keeffe, M.; Yaghi, O. M., The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
12. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
13. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
14. Klinowski, J.; Paz, F. A.; Silva, P.; Rocha, J., Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans 2011, 40 (2), 321-30.
15. Ameloot, R.; Pandey, L.; Van der Auweraer, M.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned film growth of metal-organic frameworks based on galvanic displacement. Chem Commun (Camb) 2010, 46 (21), 3735-7.
16. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3).
17. Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun (Camb) 2008, (31), 3642-4.
18. Stock, N.; Biswas, S., Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 2012, 112 (2), 933-69.
19. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO<sub>2</sub> Capture. Science 2008, 319 (5865), 939.
20. Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X., Well-defined metal-organic framework hollow nanocages. Angew Chem Int Ed Engl 2014, 53 (2), 429-33.
21. Li, A.-L.; Ke, F.; Qiu, L.-G.; Jiang, X.; Wang, Y.-M.; Tian, X.-Y., Controllable synthesis of metal–organic framework hollow nanospheres by a versatile step-by-step assembly strategy. CrystEngComm 2013, 15 (18).
22. Chen, E. X.; Yang, H.; Zhang, J., Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg Chem 2014, 53 (11), 5411-3.
23. Kim, H.; Lah, M. S., Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures. Dalton Trans 2017, 46 (19), 6146-6158.
24. Piao, Y.; Kim, J.; Na, H. B.; Kim, D.; Baek, J. S.; Ko, M. K.; Lee, J. H.; Shokouhimehr, M.; Hyeon, T., Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nat Mater 2008, 7 (3), 242-7.
25. Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S., Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 2014, 43 (16), 5700-34.
26. Dzieciol, A. J.; Mann, S., Designs for life: protocell models in the laboratory. Chem Soc Rev 2012, 41 (1), 79-85.
27. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.
28. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 2007, 129 (17), 5314-5315.
29. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem Commun (Camb) 2011, 47 (37), 10275-7.
30. Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C. K., Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc 2012, 134 (35), 14345-8.
31. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
32. Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M., Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed Engl 2006, 45 (10), 1557-9.
33. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186.
34. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
35. Shi, G.; Xu, W.; Wang, J.; Klomkliang, N.; Mousavi, B.; Chaemchuen, S., Thermochemical transformation in the single-step synthesis of zeolitic imidazole frameworks under solvent-free conditions. Dalton Transactions 2020, 49 (9), 2811-2818.
36. Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y., Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angewandte Chemie International Edition 2015, 54 (37), 10889-10893.
37. Homaei, A. A.; Sariri, R.; Vianello, F.; Stevanato, R., Enzyme immobilization: an update. J Chem Biol 2013, 6 (4), 185-205.
38. Chibata, I., Industrial Applications Of Immobilized Biocatalysts And Biomaterials. In Advances in Molecular and Cell Biology, Bittar, E. E.; Danielsson, B.; Bülow, L., Eds. Elsevier: 1996; Vol. 15, pp 151-160.
39. Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y., Hollow Zn/Co ZIF Particles Derived from Core-Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angew Chem Int Ed Engl 2015, 54 (37), 10889-93.
40. Zámocký, M.; Koller, F., Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Progress in Biophysics and Molecular Biology 1999, 72 (1), 19-66.
41. Zelko, I. N.; Mariani, T. J.; Folz, R. J., Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine 2002, 33 (3), 337-349.
42. Meister, A.; Anderson, M. E., GLUTATHIONE. Annual Review of Biochemistry 1983, 52 (1), 711-760.
43. Lapointe, S.; Sullivan, R.; Sirard, M.-A., Binding of a Bovine Oviductal Fluid Catalase to Mammalian Spermatozoa1. Biology of Reproduction 1998, 58 (3), 747-753.
44. Chibata, I., Industrial Applications Of Immobilized Biocatalysts And Biomaterials. In Advances in Molecular and Cell Biology, Bittar, E. E.; Danielsson, B.; Bülow, L. 1996, Vol. 15, pp 151-160.
45. Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C.; Tsung, C. K., Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 2015, 137 (13), 4276-9.
46. Liao, F. S.; Lo, W. S.; Hsu, Y. S.; Wu, C. C.; Wang, S. C.; Shieh, F. K.; Morabito, J. V.; Chou, L. Y.; Wu, K. C.; Tsung, C. K., Shielding against Unfolding by Embedding Enzymes in Metal-Organic Frameworks via a de Novo Approach. J Am Chem Soc 2017, 139 (19), 6530-6533.
47. Daniel, R. M.; Dines, M.; Petach, H. H., The denaturation and degradation of stable enzymes at high temperatures. Biochem J 1996, 317 ( Pt 1) (Pt 1), 1-11.
48. Allen, A. J.; Hajdu, J.; McIntyre, G. J., Journal of Applied Crystallography: the first 50 years and beyond. Journal of Applied Crystallography 2018, 51 (2), 233-234.
49. Harris, K. D. M.; Tremayne, M., Crystal Structure Determination from Powder Diffraction Data. Chemistry of Materials 1996, 8 (11), 2554-2570.
50. Billah, A. Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication. 2016.
51. Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J.; Caruso, F., Void Engineering in Metal-Organic Frameworks via Synergistic Etching and Surface Functionalization. Advanced Functional Materials 2016, 26 (32), 5827-5834.
52. Chou, L. Y.; Hu, P.; Zhuang, J.; Morabito, J. V.; Ng, K. C.; Kao, Y. C.; Wang, S. C.; Shieh, F. K.; Kuo, C. H.; Tsung, C. K., Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal-organic frameworks via double-solvent mediated overgrowth. Nanoscale 2015, 7 (46), 19408-12.
53. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254.
54. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS Letters 1990, 268 (1), 69-71.
55. Tanford, C., Protein denaturation. Advances in protein chemistry 1968, 23, 121-282.
56. Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.-H.; Goto, Y.; Réfrégiers, M.; Kardos, J., Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences 2015, 112 (24), E3095.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明