參考文獻 |
1.https://www.nedo.go.jp/hyokabu/articles/200905hitachi/img/c01_1.jpg. New Energy and Industrial Technology Development Organization.
2.Lithium Ion technical handbook. 2003: Gold Peak Industries Ltd.
3.C. Pillot, The Rechargeable Battery Market and Main Trends 2018-2030. 2019: International Congress for Battery Recycling. p. 1-25.
4.N. Bizon, Hybrid power sources topology with active mitigation of inverter current ripple. 2013.
5.N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
6.J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries. Materials (Basel), 2013. 6(1): p. 156-183.
7.G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
8.I. B. H. M. Wu, H. Deng, A. Abouimrane, Y.-K. Sun, and and K. Amine, Development of LiNi0.5Mn1.5O4/Li4Ti5O12 System with Long Cycle Life. Journal of The Electrochemical Society, 2009. 156(12): p. A1047-A1050.
9.G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan, B. Li, K. Y. Ko, P. Y. Hung, C. Z. Lu, Y. Chen, G. Leniec, S. M. Kaczmarek, B. Johannessen, L. Thomsen, V. K. Peterson, W. K. Pang, and Z. Guo, A Long Cycle-Life High-Voltage Spinel Lithium-Ion Battery Electrode Achieved by Site-Selective Doping. Angew Chem Int Ed Engl, 2020. 59(26): p. 10594-10602.
10.K. Yang, X. Liu, L. Lu, S. Wang, and P. Liu, The simulation on thermal stability of LiNi0.5Mn1.5O4/C electrochemical systems. Journal of Power Sources, 2016. 302: p. 1-6.
11.X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
12.J. Xiao, How lithium dendrites form in liquid batteries. Science, 2019. 366(6464): p. 426-427.
13.K. W. S. Chen, J. Fan, Y. Bando and D. Golberg, Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes. Journal of Materials Chemistry A, 2018. 6(25): p. 11631-11663.
14.S. Tan, Y. J. Ji, Z. R. Zhang, and Y. Yang, Recent progress in research on high-voltage electrolytes for lithium-ion batteries. Chemphyschem, 2014. 15(10): p. 1956-69.
15.K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. , 2004. 104: p. 4303−4417.
16.C. Schultz, S. Vedder, B. Streipert, M. Winter, and S. Nowak, Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances, 2017. 7(45): p. 27853-27862.
17.X. Qi, B. Blizanac, A. DuPasquier, A. Lal, P. Niehoff, T. Placke, M. Oljaca, J. Li, and M. Winter, Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4Composite Cathode Electrode. Journal of The Electrochemical Society, 2014. 162(3): p. A339-A343.
18.R. I. R. Blyth, XPS studies of graphite electrode materials for lithium ion batteries. Applied Surface Science 2000. 167: p. 99-106.
19.D. Pantea, H. Darmstadt, S. Kaliaguine, and C. Roy, Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Applied Surface Science, 2003. 217(1-4): p. 181-193.
20.N. P. W. Pieczonka, L. Yang, M. P. Balogh, B. R. Powell, K. Chemelewski, A. Manthiram, S. A. Krachkovskiy, G. R. Goward, M. Liu, and J.-H. Kim, Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(44): p. 22603-22612.
21.M. Yamada, T. Watanabe, T. Gunji, J. Wu, and F. Matsumoto, Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem, 2020. 1(2): p. 124-159.
22.e. a. A. J. Bard, Standard Potentials in Aqueous Solutions. Microchemical journal, 1986. 34: p. 245-247.
23.S.-T. Myung, Y. Sasaki, S. Sakurada, Y.-K. Sun, and H. Yashiro, Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochimica Acta, 2009. 55(1): p. 288-297.
24.S.-H. Yook, S.-H. Kim, C.-H. Park, and D.-W. Kim, Graphite–silicon alloy composite anodes employing cross-linked poly(vinyl alcohol) binders for high-energy density lithium-ion batteries. RSC Advances, 2016. 6(86): p. 83126-83134.
25.W.-R. Liu, M.-H. Yang, H.-C. Wu, S. M. Chiao, and N.-L. Wu, Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder. Electrochemical and Solid-State Letters, 2005. 8(2).
26.H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 2014. 7(12): p. 3857-3886.
27.J. Zhu, M. Yanilmaz, K. Fu, C. Chen, Y. Lu, Y. Ge, D. Kim, and X. Zhang, Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. Journal of Membrane Science, 2016. 504: p. 89-96.
28.A. El Kharbachi, O. Zavorotynska, M. Latroche, F. Cuevas, V. Yartys, and M. Fichtner, Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 2020. 817.
29.G. B. Zhong, Y. Y. Wang, Z. C. Zhang, and C. H. Chen, Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochimica Acta, 2011. 56(18): p. 6554-6561.
30.D. Liu, W. Zhu, J. Trottier, C. Gagnon, F. Barray, A. Guerfi, A. Mauger, H. Groult, C. M. Julien, J. B. Goodenough, and K. Zaghib, Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv., 2014. 4(1): p. 154-167.
31.X. Xu, S. Deng, H. Wang, J. Liu, and H. Yan, Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery. Nanomicro Lett, 2017. 9(2): p. 22.
32.N. P. W. Pieczonka, Z. Liu, P. Lu, K. L. Olson, J. Moote, B. R. Powell, and J.-H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(31): p. 15947-15957.
33.E. Krämer, T. Schedlbauer, B. Hoffmann, L. Terborg, S. Nowak, H. J. Gores, S. Passerini, and M. Winter, Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2012. 160(2): p. A356-A360.
34.B. Streipert, S. Röser, J. Kasnatscheew, P. Janßen, X. Cao, R. Wagner, I. Cekic-Laskovic, and M. Winter, Influence of LiPF6 on the Aluminum Current Collector Dissolution in High Voltage Lithium Ion Batteries after Long-Term Charge/Discharge Experiments. Journal of The Electrochemical Society, 2017. 164(7): p. A1474-A1479.
35.S.-T. Myung, Y. Hitoshi, and Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(27).
36.G. Zhou, C. Xu, W. Cheng, Q. Zhang, and W. Nie, Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment. J Anal Methods Chem, 2015. 2015: p. 467242.
37.P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science, 2010. 3(9).
38.Q. D. Nguyen, Y.-H. Wu, T.-Y. Wu, M.-J. Deng, C.-H. Yang, and J.-K. Chang, Gravimetric/volumetric capacitances, leakage current, and gas evolution of activated carbon supercapacitors. Electrochimica Acta, 2016. 222: p. 1153-1159.
39.J. Zheng, J. Xiao, W. Xu, X. Chen, M. Gu, X. Li, and J.-G. Zhang, Surface and structural stabilities of carbon additives in high voltage lithium ion batteries. Journal of Power Sources, 2013. 227: p. 211-217.
40.K. Friedel Ortega, R. Arrigo, B. Frank, R. Schlögl, and A. Trunschke, Acid–Base Properties of N-Doped Carbon Nanotubes: A Combined Temperature-Programmed Desorption, X-ray Photoelectron Spectroscopy, and 2-Propanol Reaction Investigation. Chemistry of Materials, 2016. 28(19): p. 6826-6839.
41.S. M. Jung, E. K. Lee, M. Choi, D. Shin, I. Y. Jeon, J. M. Seo, H. Y. Jeong, N. Park, J. H. Oh, and J. B. Baek, Direct solvothermal synthesis of B/N-doped graphene. Angew Chem Int Ed Engl, 2014. 53(9): p. 2398-401.
42.I.-Y. Jeon, S.-H. Shin, H.-J. Choi, S.-Y. Yu, S.-M. Jung, and J.-B. Baek, Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017. 116: p. 77-83.
43.Q. Fan, H.-J. Noh, Z. Wei, J. Zhang, X. Lian, J. Ma, S.-M. Jung, I.-Y. Jeon, J. Xu, and J.-B. Baek, Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy, 2019. 62: p. 419-425.
44.V. M. B. G. Sumpter, J. M. Romo-Herrera, E. Cruz-Silva, D. A. Cullen, H. Terrones, D. J. Smith, and M. Terrones, Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano, 2007. 1: p. 369-375.
45.J. Wu, Z. Pan, Y. Zhang, B. Wang, and H. Peng, The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry A, 2018. 6(27): p. 12932-12944.
46.W. H. Shin, H. M. Jeong, B. G. Kim, J. K. Kang, and J. W. Choi, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett, 2012. 12(5): p. 2283-8.
47.I. Y. Jeon, H. J. Noh, and J. B. Baek, Nitrogen-Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chem Asian J, 2020. 15(15): p. 2282-2293.
48.C. Ma, X. Shao, and D. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. Journal of Materials Chemistry, 2012. 22(18).
49.J. Gu, Z. Du, C. Zhang, and S. Yang, Pyridinic Nitrogen-Enriched Carbon Nanogears with Thin Teeth for Superior Lithium Storage. Advanced Energy Materials, 2016. 6(18).
50.G. Zhou, E. Paek, G. S. Hwang, and A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun, 2015. 6: p. 7760.
51.J. W. Hu, Z. P. Wu, S. W. Zhong, W. B. Zhang, S. Suresh, A. Mehta, and N. Koratkar, Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon, 2015. 87: p. 292-298.
52.X. Wang, Z. Zhang, Y. Qu, Y. Lai, and J. Li, Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. Journal of Power Sources, 2014. 256: p. 361-368.
53.Standard Test Method for Carbon Black—Total and External Surface Area by Nitrogen Adsorption. ASTM International, 1999: p. D4820-99.
54.C. Bosch-Navarro, E. Coronado, C. Marti-Gastaldo, J. F. Sanchez-Royo, and M. G. Gomez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale, 2012. 4(13): p. 3977-82.
55.Q. Miao, L. Wang, Z. Liu, B. Wei, J. Wang, X. Liu, and W. Fei, Effect of defects controlled by preparation condition and heat treatment on the ferromagnetic properties of few-layer graphene. Sci Rep, 2017. 7(1): p. 5877.
56.M. Belhachemi and F. Addoun, Effect of Heat Treatment on the Surface Properties of Activated Carbons. E-Journal of Chemistry, 2011. 8(3): p. 992-999.
57.A. R. T.Jawhari, J.Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995. 33(11): p. 1561-1565.
58.H. P. BOEHM, Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 1994. 32: p. 759-769.
59.Jahromi and Ghahreman, Effect of Surface Modification with Different Acids on the Functional Groups of AF 5 Catalyst and Its Catalytic Effect on the Atmospheric Leaching of Enargite. Colloids and Interfaces, 2019. 3(2).
60.R. Wang, X. Chen, Z. Huang, J. Yang, F. Liu, M. Chu, T. Liu, C. Wang, W. Zhu, S. Li, S. Li, J. Zheng, J. Chen, L. He, L. Jin, F. Pan, and Y. Xiao, Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat Commun, 2021. 12(1): p. 3085.
61.S. Wang, P. Li, L. Shao, K. Wu, X. Lin, M. Shui, N. Long, D. Wang, and J. Shu, Preparation of spinel LiNi0.5Mn1.5O4 and Cr-doped LiNi0.5Mn1.5O4 cathode materials by tartaric acid assisted sol–gel method. Ceramics International, 2015. 41(1): p. 1347-1353.
62.J. Z. Li Wang, Xiangming He*, Jian Gao, Jianjun Li, Chunrong Wan, Changyin Jiang, Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries. Int. J. Electrochem. Sci., 2012. 7: p. 345-353.
63.W. R. Zhong-Shuai Wu, Li Xu, Feng Li, and Hui-Ming Cheng, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011. 5: p. 5463–5471.
64.X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 2011. 13(8): p. 822-825.
65.A. L. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010. 4(11): p. 6337-42.
66.S. Jalili and R. Vaziri, Study of the electronic properties of Li-intercalated nitrogen doped graphite. Molecular Physics, 2011. 109(5): p. 687-694.
67.Y. Shang, H. Xu, M. Li, and G. Zhang, Preparation of N-Doped Graphene by Hydrothermal Method and Interpretation of N-Doped Mechanism. Nano, 2017. 12(02).
68.Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009. 21(13): p. 2950-2956.
69.S. A. Shamsuddin, M. N. Derman, J. M. Ismail, N. H. A. Halim, U. Hashim, and M. Rusop, The effect of nitric acid oxidation parameters to the structural and electrochemical behavior of multi-walled carbon nanotubes. 2018.
70.L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2012. 2(10).
71.Y. Ma, L. Wang, X. Yang, and R. Zhang, Environmental-Friendly Synthesis of Alkyl Carbamates from Urea and Alcohols with Silica Gel Supported Catalysts. Catalysts, 2018. 8(12). |