博碩士論文 108324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.223.172.180
姓名 呂英豪(Ying-Hao Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究
(Combined Experimental and Computational Study of Photocatalysis and Electronic Structure of Bicontinuous Mesoporous Titanium Dioxide)
相關論文
★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響
★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討★ 脂質組成成分對細胞膜物理性質與生物功能的影響
★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響
★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這項研究中,我們採用了界面活性劑和高分子聚合物作為模板並通過蒸發誘導自組裝方法製備了具有不同雙連續結構(螺旋型和原型)的中孔(mesoporous)二氧化鈦 (TiO2)。藉由界面活性劑/高分子聚合物與鈦前驅體之間的共組裝以及後續的熱處理,我們能夠獲得在分子尺度上具有銳鈦礦晶相和在介觀尺度上具有雙連續結構的二氧化鈦。利用密度泛函理論的模擬方法,我們進一步計算出不同雙連續相二氧化鈦在電子結構上的差異。透過模擬的結果以及實驗量測比表面積與帶隙,我們試圖解釋二氧化鈦於不同雙連續相結構下的光催化功效。藉由這項研究,我們希望建立催化劑的中孔結構、電子結構和催化能力三者之間的相關性。
摘要(英) In this study, mesoporous titanium dioxide (TiO2) with different bicontinuous structures (i.e., gyroid and primitive phases) were prepared by evaporation-induced self-assembly method, where surfactants or polymers were used as templates. Via co-assembling between surfactants/polymers and the titanium precursor, followed by a heat treatment, we were able to obtain the TiO2 featured with the anatase crystalline phase in the molecular scale and bicontinuous structures in the mesoscopic scale. The photocatalytic efficacy of the mesoporous TiO2 was measured and benchmarked against the bulk Ti¬¬O2. We also determined the electronic structures for the mesoporous and bulk TiO2 through the density functional theory calculation and attempted to explain the observed differences in photocatalytic efficacy among the mesoporous and bulk TiO2 in terms of the differences in electronic structures and in experimentally determined specific surface area and band gap. Through this study, we aspire to establish correlations among mesoscopic structure, electronic structure, and catalytic capability for catalysts in general.
關鍵字(中) ★ 雙連續相
★ 二氧化鈦
關鍵字(英) ★ bicontinuous
★ titanium dioxide
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 中孔材料發展史 1
1-2 雙連續相中孔材料 4
1-3 二氧化鈦特性 6
1-4 二氧化鈦光反應及催化機制 8
1-5 雙連續相中孔二氧化鈦材料 10
1-6 研究目的及動機 12
第二章 實驗方法 13
2-1 實驗藥品 13
2-2 樣品製備 14
2-2-1 陽離子雙子型界面活性劑C18-6-18合成流程 14
2-2-2 製備有機-無機複合材料流程 15
2-2-3 雙連續相銳鈦礦二氧化鈦中孔材料 18
2-3 實驗儀器 19
2-4 分析用儀器原理介紹 20
2-4-1 核磁共振光譜儀 20
2-4-2 質譜儀 23
2-4-3 X光繞射儀 24
2-4-4 小角度X光散射儀 26
2-4-5 孔洞及比表面積分析儀 29
2-4-6 紫外光/可見光分光光譜儀 32
2-5 模擬理論方法 35
2-5-1 量子力學理論演化史 35
2-5-2 軟體介紹 45
2-5-3 原子模型架構與實驗參數設定 46
第三章 結果與討論 52
3-1 實驗結果分析 52
3-1-1 界面活性劑性質分析 52
3-1-2 SAXS分析 54
3-1-3 XRD分析 56
3-1-4 BET分析 57
3-1-5 UV-Vis分析 59
3-2 模擬結果分析 63
3-2-1 收斂性測試 63
3-2-2 原子結構分析 64
3-2-3 電子結構分析 65
3-3 中孔結構、能帶結構以及催化效率之相關性討論 75
第四章 結論 81
文獻目錄與參考資料 82
參考文獻 [1] Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619.
[2] Soler-Illia, G.J.A.A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies to Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 2002, 102, 4093–4138.
[3] Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420.
[4] Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710–712.
[5] Tanev, P.T.; Pinnavaia, T.J. A Neutral Templating Route to Mesoporous Molecular Sieves. Science 1995, 267, 865–867.
[6] Kim, S.S.; Zhang, W.Z.; Pinnavaia, T.J. Ultrastable Mesostructured Silica Vesicles. Science 1998, 282, 1302–1305.
[7] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552.
[8] Kresge, C.T.; Roth, W.J. The Discovery of Mesoporous Molecular Sieves from the Twenty Year Perspective. Chemical Society Reviews 2013, 42, 3663-3670.
[9] Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent Advances in Functionalized Micro and Mesoporous Carbon Materials: Synthesis and Applications. Chem. Soc. Rev. 2018, 47, 2680−2721.
[10] Han, L.; Che, S. An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Adv. Mater. 2018, 30, 1705708.
[11] Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Highly Efficient Nonprecious Metal Catalysts towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures. Chem. Soc. Rev. 2016, 45, 517−531.
[12] Vignolini, S.; Yufa, N.; Cunha, P.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J.; Steiner, U. A 3D Optical Metamaterial Made by Self-Assembly. Adv. Mater. 2012, 24, 23−27.
[13] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969−5985.
[14] Maskery, I.; Sturm, L.; Aremu, A. O.; Panesar, A.; Williams, C. B.; Tuck, C. J.; Wildman R.D.; Ashcroft I.A.; Hague, R. J. Insights into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing. Polymer 2018, 152, 62-71.
[15] Yuan, L.; Ding, S.; Wen, C. Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review. Bioactive Materials 2019, 4, 56-70.
[16] Hyde, S.; Blum, Z.; Landh, T., Lidin, S.; Ninham, B. W.; Andersson, S.; Larsson, K. The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology 1996.
[17] Schwarz, H. A. Gesammelte Mathematische Abhandlungen 1890.
[18] Schoen, A. H. Infinite Periodic Minimal Surfaces Without SelfIntersections, NASA Technical Report D-5541 1970.
[19] Holyst, R. Infinite Networks of Surfaces. Nature Materials 2005, 4, 510-511.
[20] Schröder-Turk, G. E.; Fogden, A.; Hyde, S. T. Bicontinuous Geometries and Molecular Self-Assembly: Comparison of Local Curvature and Global Packing Variations in Genus-Three Cubic, Tetragonal and Rhombohedral Surfaces. The European Physical Journal B-Condensed Matter and Complex Systems 2006, 54, 509-524.
[21] Orilall, M. C.; Wiesner, U. Block Copolymer Based Composition and Morphology Control in Nanostructured Hybrid Materials for Energy Conversion and Storage: Solar Cells, Batteries, and Fuel Cells. Chemical Society Reviews 2011, 40, 520-535.
[22] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chemical Society Reviews 2012, 41, 5969-5985.
[23] Stefik, M.; Guldin, S.; Vignolini, S.; Wiesner, U.; Steiner, U. Block Copolymer Self-Assembly for Nanophotonics. Chemical Society Reviews 2015, 44, 5076-5091.
[24] Wan, Y.; Zhao, D. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chemical Reviews 2007, 107, 2821-2860.
[25] Han, L.; Xu, D.; Liu, Y.; Ohsuna, T.; Yao, Y.; Jiang, C.; Che, S. Synthesis and Characterization of Macroporous Photonic Structure That Consists of Azimuthally Shifted Double-Diamond Silica Frameworks. Chemistry of Materials 2014, 26, 7020-7028.
[26] Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Snaith, H. J. A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters 2009, 9, 2807-2812.
[27] Vallet-Regi, M.; Rámila, A.; Del Real, R. P.; Pérez-Pariente, J. A New Property of MCM-41: Drug Delivery System. Chemistry of Materials 2001, 13, 308-311.
[28] Chuang, C.; Jin, B. Y.; Wei, W. C.; Tsoo, C. C. Beaded Realization of Canonical P, D, and G Triply Periodic Minimal Surfaces. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture 2012, 503-506.
[29] Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.M.; Hamilton, J. W.J.; Byrne, J.; O’Shea, K.; Entezari, M. H.; Dionysiou, D. D. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Applied Catalysis B: Environmental 2012, 125, 331-349.
[30] Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review. J. Power Sources 2009, 192, 588−598.
[31] Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry 2004, 32, 33-177.
[32] Ola, O., & Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42.
[33] Linsebigler, A. L.; Lu, G.; Yates Jr, J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95, 735-758.
[34] Nosaka, Y.; Fox, M. A. Kinetics for Electron Transfer from Laser-Pulse Irradiated Colloidal Semiconductors to Adsorbed Methylviologen: Dependence of the Quantum Yield on Incident Pulse Width. The Journal of Physical Chemistry 1988, 92, 1893-1897.
[35] Chong, M. N.; Jin, B.; Chow, C. W.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research 2010, 44, 2997-3027.
[36] Mahoney, L.; Koodali, R. T. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials 2014, 7, 2697-2746.
[37] Dörr, T. S.; Deilmann, L.; Haselmann, G.; Cherevan, A.; Zhang, P.; Blaha, P.; Oliveira P. W.; Kraus T.; Eder, D. Ordered Mesoporous TiO2 Gyroids: Effects of Pore Architecture and Nb‐Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation. Advanced Energy Materials 2018, 8, 1802566.
[38] Hsueh, H. Y.; Ho, R. M. Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28, 8518-8529.
[39] He, C.; Tian, B.; Zhang, J. Synthesis of Thermally Stable and Highly Ordered Bicontinuous Cubic Mesoporous Titania–Silica Binary Oxides with Crystalline Framework. Microporous and Mesoporous Materials 2009, 126, 50-57.
[40] Cao, R.; Liu, X.; Liu, Y.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of Nuclear Magnetic Resonance Spectroscopy to the Evaluation of Complex Food Constituents. Food Chemistry 2020, 128258.
[41] National Institute of Advanced Industrial Science and Technology (2009) Retrieved from http://riodb01.ibase.aist.go.jp/sdbs/ (July 21, 2021)
[42] Cumova, J.; Potacova, A.; Zdrahal, Z.; Hajek, R. Proteomic Analysis in Multiple Myeloma Research. Molecular Biotechnology 2011, 47, 83-93.
[43] Bijelic, A.; Rompel, A. Polyoxometalates: More Than a Phasing Tool in Protein Crystallography. ChemTexts 2018, 4, 1-27.
[44] Barré L. Contribution of Small-Angle X-Ray and Neutron Scattering (SAXS and SANS) to the Characterization of Natural Nanomaterials. X-Ray and Neutron Techniques for Nanomaterials Characterization 2016, 665-716.
[45] Kulkarni, C. V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S. Monoolein: A Magic Lipid?. Physical Chemistry Chemical Physics 2011, 13, 3004-3021.
[46] Kumar, K. V.; Gadipelli, S.; Wood, B., Ramisetty, K. A.; Stewart, A. A.; Howard, C. A.; Rodriguez-Reinoso, F. Characterization of the Adsorption Site Energies and Heterogeneous Surfaces of Porous Materials. Journal of Materials Chemistry A 2019, 7, 10104-10137.
[47] Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 1938, 60, 309-319.
[48] Rocha, F. S.; Gomes, A. J.; Lunardi, C. N.; Kaliaguine, S.; Patience, G. S. Experimental Methods in Chemical Engineering: Ultraviolet Visible Spectroscopy—UV‐Vis. The Canadian Journal of Chemical Engineering 2018, 96, 2512-2517.
[49] Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Materials Research Bulletin 1968, 3, 37-46.
[50] Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817.
[51] Liang, D.; Bowers, J. E. Recent Progress in Lasers on Silicon. Nature Photonics 2010, 4, 511-517.
[52] Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Annalen der Physic 1927, 389, 457-484.
[53] Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Physical Review 1964, 136, B864.
[54] Kohn, W.; Sham, L. J. Quantum Density Oscillations in an Inhomogeneous Electron Gas. Physical Review 1965, 137, A1697.
[55] Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140, A1133.
[56] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865.
[57] Blöchl, P. E. Projector Augmented-Wave Method. Physical Review B 1994, 50, 17953.
[58] Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, A. J. Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics 1992, 64, 1045.
[59] Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Physical Review B 1991, 44, 943.
[60] Meunier, M.; Robertson, S. Materials Studio 20th Anniversary, Molecular Simulation 2021, 47, 537-539
[61] Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials 2005, 220, 567-570.
[62] Owens, J. R.; Daniels, C.; Nicolaï, A.; Terrones, H.; Meunier, V. Structural, Energetic, and Electronic Properties of Gyroidal Graphene Nanostructures. Carbon 2016, 96, 998-1007.
[63] O’Keeffe, M.; Adams, G. B.; Sankey, O. F. Predicted New Low Energy Forms of Carbon. Physical Review Letters 1992, 68, 2325.
[64] Wong, K. Y.; Pettitt, B. M. A New Boundary Condition for Computer Simulations of Interfacial Systems. Chemical Physics Letters 2000, 326, 193-198.
[65] Whitehead S. (2019) Triply Periodic Minimal Surfaces. Retrieved from https://parametrichouse.com/periodic-minimal-surface/ (July 21, 2021)
[66] Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. Prescription for the Design and Selection of Density Functional Approximations: More Constraint Satisfaction with Fewer Fits. The Journal of Chemical Physics 2005, 123, 062201.
[67] Garcia, M. T.; Kaczerewska, O.; Ribosa, I.; Brycki, B.; Materna, P.; Drgas, M. Hydrophilicity and Flexibility of the Spacer as Critical Parameters on the Aggregation Behavior of Long Alkyl Chain Cationic Gemini Surfactants in Aqueous Solution. Journal of Molecular Liquids 2017, 230, 453-460.
[68] Scarpelli, F.; Mastropietro, T. F.; Poerio, T.; Godbert, N. Mesoporous TiO2 Thin Films: State of the Art. Titanium Dioxide-Material for a Sustainable Environment 2018, 508, 135-142.
[69] Deskins, N. A.; Dupuis, M. Electron Transport via Polaron Hopping in Bulk TiO2: A Density Functional Theory Characterization. Physical Review B 2007, 75, 195212.
[70] Meng, Q.; Wang, T.; Liu, E.; Ma, X.; Ge, Q.; Gong, J. Understanding Electronic and Optical Properties of Anatase TiO2 Photocatalysts Co-Doped with Nitrogen and Transition Metals. Physical Chemistry Chemical Physics 2013, 15(24), 9549-9561.
[71] Gao, H.; Li, X.; Lv, J.; Liu, G. Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO2 (001) Nanocomposites. The Journal of Physical Chemistry C 2013, 117, 16022-16027.
[72] Islam, S. Z.; Reed, A.; Kim, D. Y.; Rankin, S. E. N2/Ar Plasma Induced Doping of Ordered Mesoporous TiO2 Thin Films for Visible Light Active Photocatalysis. Microporous and Mesoporous Materials 2016, 220, 120-128.
[73] Mille, C.; Tyrode, E. C.; Corkery, R. W. 3D Titania Photonic Crystals Replicated from Gyroid Structures in Butterfly Wing Scales: Approaching Full Band Gaps at Visible Wavelengths. RSC Advances 2013, 3, 3109-3117.
[74] Wu, L.; Wang, W.; Zhang, W.; Su, H.; Gu, J.; Liu, Q.; Jelenković, B. Optical Performance Study of Gyroid‐Structured TiO2 Photonic Crystals Replicated from Natural Templates Using a Sol‐Gel Method. Advanced Optical Materials 2018, 6, 1800064.
[75] Li, X., Hu, Q.; Wang, H.; Chen, M.; Hao, X.; Ma, Y.; Guan, G. Charge Induced Crystal Distortion and Morphology Remodeling: Formation of Mn-CoP Nanowire@ Mn-CoOOH Nanosheet Electrocatalyst with Rich Edge Dislocation Defects. Applied Catalysis B: Environmental 2021, 292, 120172.
[76] Assadi, M. H. N.; Hanaor, D. A. Theoretical Study on Copper′s Energetics and Magnetism in TiO2 Polymorphs. Journal of Applied Physics 2013, 113, 233913.
[77] Ogale, S. B. Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems. Advanced Materials 2010, 22, 3125-3155.
[78] Crepaldi, E. L.; Soler-Illia, G. J. D. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. Journal of the American Chemical Society 2003, 125, 9770-9786.
[79] Leung, D. Y.; Fu, X.; Wang, C.; Ni, M.; Leung, M. K.; Wang, X.; Fu, X. Hydrogen Production Over Titania‐Based Photocatalysts. ChemSusChem 2010, 3, 681-694.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2021-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明