參考文獻 |
[1] Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603–619.
[2] Soler-Illia, G.J.A.A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies to Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 2002, 102, 4093–4138.
[3] Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420.
[4] Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359, 710–712.
[5] Tanev, P.T.; Pinnavaia, T.J. A Neutral Templating Route to Mesoporous Molecular Sieves. Science 1995, 267, 865–867.
[6] Kim, S.S.; Zhang, W.Z.; Pinnavaia, T.J. Ultrastable Mesostructured Silica Vesicles. Science 1998, 282, 1302–1305.
[7] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552.
[8] Kresge, C.T.; Roth, W.J. The Discovery of Mesoporous Molecular Sieves from the Twenty Year Perspective. Chemical Society Reviews 2013, 42, 3663-3670.
[9] Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent Advances in Functionalized Micro and Mesoporous Carbon Materials: Synthesis and Applications. Chem. Soc. Rev. 2018, 47, 2680−2721.
[10] Han, L.; Che, S. An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Adv. Mater. 2018, 30, 1705708.
[11] Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Highly Efficient Nonprecious Metal Catalysts towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures. Chem. Soc. Rev. 2016, 45, 517−531.
[12] Vignolini, S.; Yufa, N.; Cunha, P.; Guldin, S.; Rushkin, I.; Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J.; Steiner, U. A 3D Optical Metamaterial Made by Self-Assembly. Adv. Mater. 2012, 24, 23−27.
[13] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41, 5969−5985.
[14] Maskery, I.; Sturm, L.; Aremu, A. O.; Panesar, A.; Williams, C. B.; Tuck, C. J.; Wildman R.D.; Ashcroft I.A.; Hague, R. J. Insights into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing. Polymer 2018, 152, 62-71.
[15] Yuan, L.; Ding, S.; Wen, C. Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review. Bioactive Materials 2019, 4, 56-70.
[16] Hyde, S.; Blum, Z.; Landh, T., Lidin, S.; Ninham, B. W.; Andersson, S.; Larsson, K. The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology 1996.
[17] Schwarz, H. A. Gesammelte Mathematische Abhandlungen 1890.
[18] Schoen, A. H. Infinite Periodic Minimal Surfaces Without SelfIntersections, NASA Technical Report D-5541 1970.
[19] Holyst, R. Infinite Networks of Surfaces. Nature Materials 2005, 4, 510-511.
[20] Schröder-Turk, G. E.; Fogden, A.; Hyde, S. T. Bicontinuous Geometries and Molecular Self-Assembly: Comparison of Local Curvature and Global Packing Variations in Genus-Three Cubic, Tetragonal and Rhombohedral Surfaces. The European Physical Journal B-Condensed Matter and Complex Systems 2006, 54, 509-524.
[21] Orilall, M. C.; Wiesner, U. Block Copolymer Based Composition and Morphology Control in Nanostructured Hybrid Materials for Energy Conversion and Storage: Solar Cells, Batteries, and Fuel Cells. Chemical Society Reviews 2011, 40, 520-535.
[22] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chemical Society Reviews 2012, 41, 5969-5985.
[23] Stefik, M.; Guldin, S.; Vignolini, S.; Wiesner, U.; Steiner, U. Block Copolymer Self-Assembly for Nanophotonics. Chemical Society Reviews 2015, 44, 5076-5091.
[24] Wan, Y.; Zhao, D. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chemical Reviews 2007, 107, 2821-2860.
[25] Han, L.; Xu, D.; Liu, Y.; Ohsuna, T.; Yao, Y.; Jiang, C.; Che, S. Synthesis and Characterization of Macroporous Photonic Structure That Consists of Azimuthally Shifted Double-Diamond Silica Frameworks. Chemistry of Materials 2014, 26, 7020-7028.
[26] Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Snaith, H. J. A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters 2009, 9, 2807-2812.
[27] Vallet-Regi, M.; Rámila, A.; Del Real, R. P.; Pérez-Pariente, J. A New Property of MCM-41: Drug Delivery System. Chemistry of Materials 2001, 13, 308-311.
[28] Chuang, C.; Jin, B. Y.; Wei, W. C.; Tsoo, C. C. Beaded Realization of Canonical P, D, and G Triply Periodic Minimal Surfaces. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture 2012, 503-506.
[29] Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.M.; Hamilton, J. W.J.; Byrne, J.; O’Shea, K.; Entezari, M. H.; Dionysiou, D. D. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Applied Catalysis B: Environmental 2012, 125, 331-349.
[30] Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review. J. Power Sources 2009, 192, 588−598.
[31] Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry 2004, 32, 33-177.
[32] Ola, O., & Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 24, 16-42.
[33] Linsebigler, A. L.; Lu, G.; Yates Jr, J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews 1995, 95, 735-758.
[34] Nosaka, Y.; Fox, M. A. Kinetics for Electron Transfer from Laser-Pulse Irradiated Colloidal Semiconductors to Adsorbed Methylviologen: Dependence of the Quantum Yield on Incident Pulse Width. The Journal of Physical Chemistry 1988, 92, 1893-1897.
[35] Chong, M. N.; Jin, B.; Chow, C. W.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Research 2010, 44, 2997-3027.
[36] Mahoney, L.; Koodali, R. T. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications. Materials 2014, 7, 2697-2746.
[37] Dörr, T. S.; Deilmann, L.; Haselmann, G.; Cherevan, A.; Zhang, P.; Blaha, P.; Oliveira P. W.; Kraus T.; Eder, D. Ordered Mesoporous TiO2 Gyroids: Effects of Pore Architecture and Nb‐Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation. Advanced Energy Materials 2018, 8, 1802566.
[38] Hsueh, H. Y.; Ho, R. M. Bicontinuous Ceramics with High Surface Area from Block Copolymer Templates. Langmuir 2012, 28, 8518-8529.
[39] He, C.; Tian, B.; Zhang, J. Synthesis of Thermally Stable and Highly Ordered Bicontinuous Cubic Mesoporous Titania–Silica Binary Oxides with Crystalline Framework. Microporous and Mesoporous Materials 2009, 126, 50-57.
[40] Cao, R.; Liu, X.; Liu, Y.; Zhai, X.; Cao, T.; Wang, A.; Qiu, J. Applications of Nuclear Magnetic Resonance Spectroscopy to the Evaluation of Complex Food Constituents. Food Chemistry 2020, 128258.
[41] National Institute of Advanced Industrial Science and Technology (2009) Retrieved from http://riodb01.ibase.aist.go.jp/sdbs/ (July 21, 2021)
[42] Cumova, J.; Potacova, A.; Zdrahal, Z.; Hajek, R. Proteomic Analysis in Multiple Myeloma Research. Molecular Biotechnology 2011, 47, 83-93.
[43] Bijelic, A.; Rompel, A. Polyoxometalates: More Than a Phasing Tool in Protein Crystallography. ChemTexts 2018, 4, 1-27.
[44] Barré L. Contribution of Small-Angle X-Ray and Neutron Scattering (SAXS and SANS) to the Characterization of Natural Nanomaterials. X-Ray and Neutron Techniques for Nanomaterials Characterization 2016, 665-716.
[45] Kulkarni, C. V.; Wachter, W.; Iglesias-Salto, G.; Engelskirchen, S.; Ahualli, S. Monoolein: A Magic Lipid?. Physical Chemistry Chemical Physics 2011, 13, 3004-3021.
[46] Kumar, K. V.; Gadipelli, S.; Wood, B., Ramisetty, K. A.; Stewart, A. A.; Howard, C. A.; Rodriguez-Reinoso, F. Characterization of the Adsorption Site Energies and Heterogeneous Surfaces of Porous Materials. Journal of Materials Chemistry A 2019, 7, 10104-10137.
[47] Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 1938, 60, 309-319.
[48] Rocha, F. S.; Gomes, A. J.; Lunardi, C. N.; Kaliaguine, S.; Patience, G. S. Experimental Methods in Chemical Engineering: Ultraviolet Visible Spectroscopy—UV‐Vis. The Canadian Journal of Chemical Engineering 2018, 96, 2512-2517.
[49] Tauc, J. Optical Properties and Electronic Structure of Amorphous Ge and Si. Materials Research Bulletin 1968, 3, 37-46.
[50] Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817.
[51] Liang, D.; Bowers, J. E. Recent Progress in Lasers on Silicon. Nature Photonics 2010, 4, 511-517.
[52] Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Annalen der Physic 1927, 389, 457-484.
[53] Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Physical Review 1964, 136, B864.
[54] Kohn, W.; Sham, L. J. Quantum Density Oscillations in an Inhomogeneous Electron Gas. Physical Review 1965, 137, A1697.
[55] Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140, A1133.
[56] Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865.
[57] Blöchl, P. E. Projector Augmented-Wave Method. Physical Review B 1994, 50, 17953.
[58] Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, A. J. Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics 1992, 64, 1045.
[59] Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Physical Review B 1991, 44, 943.
[60] Meunier, M.; Robertson, S. Materials Studio 20th Anniversary, Molecular Simulation 2021, 47, 537-539
[61] Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials 2005, 220, 567-570.
[62] Owens, J. R.; Daniels, C.; Nicolaï, A.; Terrones, H.; Meunier, V. Structural, Energetic, and Electronic Properties of Gyroidal Graphene Nanostructures. Carbon 2016, 96, 998-1007.
[63] O’Keeffe, M.; Adams, G. B.; Sankey, O. F. Predicted New Low Energy Forms of Carbon. Physical Review Letters 1992, 68, 2325.
[64] Wong, K. Y.; Pettitt, B. M. A New Boundary Condition for Computer Simulations of Interfacial Systems. Chemical Physics Letters 2000, 326, 193-198.
[65] Whitehead S. (2019) Triply Periodic Minimal Surfaces. Retrieved from https://parametrichouse.com/periodic-minimal-surface/ (July 21, 2021)
[66] Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.; Csonka, G. I. Prescription for the Design and Selection of Density Functional Approximations: More Constraint Satisfaction with Fewer Fits. The Journal of Chemical Physics 2005, 123, 062201.
[67] Garcia, M. T.; Kaczerewska, O.; Ribosa, I.; Brycki, B.; Materna, P.; Drgas, M. Hydrophilicity and Flexibility of the Spacer as Critical Parameters on the Aggregation Behavior of Long Alkyl Chain Cationic Gemini Surfactants in Aqueous Solution. Journal of Molecular Liquids 2017, 230, 453-460.
[68] Scarpelli, F.; Mastropietro, T. F.; Poerio, T.; Godbert, N. Mesoporous TiO2 Thin Films: State of the Art. Titanium Dioxide-Material for a Sustainable Environment 2018, 508, 135-142.
[69] Deskins, N. A.; Dupuis, M. Electron Transport via Polaron Hopping in Bulk TiO2: A Density Functional Theory Characterization. Physical Review B 2007, 75, 195212.
[70] Meng, Q.; Wang, T.; Liu, E.; Ma, X.; Ge, Q.; Gong, J. Understanding Electronic and Optical Properties of Anatase TiO2 Photocatalysts Co-Doped with Nitrogen and Transition Metals. Physical Chemistry Chemical Physics 2013, 15(24), 9549-9561.
[71] Gao, H.; Li, X.; Lv, J.; Liu, G. Interfacial Charge Transfer and Enhanced Photocatalytic Mechanisms for the Hybrid Graphene/Anatase TiO2 (001) Nanocomposites. The Journal of Physical Chemistry C 2013, 117, 16022-16027.
[72] Islam, S. Z.; Reed, A.; Kim, D. Y.; Rankin, S. E. N2/Ar Plasma Induced Doping of Ordered Mesoporous TiO2 Thin Films for Visible Light Active Photocatalysis. Microporous and Mesoporous Materials 2016, 220, 120-128.
[73] Mille, C.; Tyrode, E. C.; Corkery, R. W. 3D Titania Photonic Crystals Replicated from Gyroid Structures in Butterfly Wing Scales: Approaching Full Band Gaps at Visible Wavelengths. RSC Advances 2013, 3, 3109-3117.
[74] Wu, L.; Wang, W.; Zhang, W.; Su, H.; Gu, J.; Liu, Q.; Jelenković, B. Optical Performance Study of Gyroid‐Structured TiO2 Photonic Crystals Replicated from Natural Templates Using a Sol‐Gel Method. Advanced Optical Materials 2018, 6, 1800064.
[75] Li, X., Hu, Q.; Wang, H.; Chen, M.; Hao, X.; Ma, Y.; Guan, G. Charge Induced Crystal Distortion and Morphology Remodeling: Formation of Mn-CoP Nanowire@ Mn-CoOOH Nanosheet Electrocatalyst with Rich Edge Dislocation Defects. Applied Catalysis B: Environmental 2021, 292, 120172.
[76] Assadi, M. H. N.; Hanaor, D. A. Theoretical Study on Copper′s Energetics and Magnetism in TiO2 Polymorphs. Journal of Applied Physics 2013, 113, 233913.
[77] Ogale, S. B. Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems. Advanced Materials 2010, 22, 3125-3155.
[78] Crepaldi, E. L.; Soler-Illia, G. J. D. A.; Grosso, D.; Cagnol, F.; Ribot, F.; Sanchez, C. Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. Journal of the American Chemical Society 2003, 125, 9770-9786.
[79] Leung, D. Y.; Fu, X.; Wang, C.; Ni, M.; Leung, M. K.; Wang, X.; Fu, X. Hydrogen Production Over Titania‐Based Photocatalysts. ChemSusChem 2010, 3, 681-694. |