參考文獻 |
[1] D.M. Newman, M.L. Wears, M. Jollie, D. Choo, "Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording," Nanotechnology, 18 (2007) 205301.
[2] K.Q. Peng, X. Wang, X. Wu, S. Lee, Tong, "Fabrication and photovoltaic property of ordered macroporous silicon," Applied Physics Letters, 95 (2009) 143119.
[3] T. Søndergaard, S.I. Bozhevolnyi, "Metal nano-strip optical resonators," Optics Express, 15 (2007) 4198.
[4] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati, T. Som, "Surfing silicon nanofacets for cold cathode electron emission sites," ACS Applied Materials & Interfaces, 9 (2017) 38931.
[5] P. Bhattacharya, S. Gohil, J. Mazher, S. Ghosh, P. Ayyub, "Universal, geometry-driven hydrophobic behaviour of bare metal nanowire clusters," Nanotechnology, 19 (2008) 075709.
[6] K. Wang, H. Hu, S. Lu, M. Jin, Y. Wang, T. He, "Visible and near-infrared dual-band photodetector based on gold–silicon metamaterial," Applied Physics Letters, 116 (2020) 203107.
[7] D. Liu, L. Lin, Q. Chen, H. Zhou, J. Wu, "Low power consumption gas sensor created from silicon nanowires/TiO2 core-shell heterojunctions," ACS Sensors, 2 (2017) 1491.
[8] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, L. Hu, "Fabrication and photoelectrochemical properties of ordered Si nanohole arrays," Applied Surface Science, 292 (2014) 86.
[9] R. Khare, M.A. More, D. Chakravarty, "Transformation of ZnO nanorods into nanotubes and their field emission studies," Modern Physics Letters B, 29 (2015) 1540044.
[10] K.S. Hazra, T. Gigras, D.S. Misra, "Tailoring the electrostatic screening effect during field emission from hollow multiwalled carbon nanotube pillars," Applied Physics Letters, 98 (2011) 123116.
[11] R. Kumar, R.P. Chauhan, R. Kumar, S.K. Chakarvarti, "Preparation and field emission study of low-dimensional ZnS arrays and tubules," Journal of Experimental Nanoscience, 10 (2013) 126.
[12] S. Lv, Z. Li, J. Liao, Z. Zhang, W. Miao, "Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33 (2015) 02B101.
[13] S.S. Choi, M.Y. Jung, M.S. Joo, D.W. Kim, M.J. Park, S.B. Kim, H.T. Jeon, "Field emission study of titanium silicide array," Surface and Interface Analysis, 36 (2004) 435.
[14] C.F. Chuang, S.L. Cheng, "Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures," Nano Research, 7 (2014) 1592.
[15] F.J. Harding, S. Surdo, B. Delalat, C. Cozzi, R. Elnathan, S. Gronthos, N.H. Voelcker, G. Barillaro, "Ordered silicon pillar arrays prepared by electrochemical micromachining: substrates for high-efficiency cell transfection," ACS Applied Materials & Interfaces, 8 (2016) 29197.
[16] K.A. Gonchar, S.N. Agafilushkina, D.V. Moiseev, I.V. Bozhev, A.A. Manykin, E.A. Kropotkina, A.S. Gambaryan, L.A. Osminkina, "H1N1 influenza virus interaction with a porous layer of silicon nanowires," Materials Research Express, 7 (2020) 035002.
[17] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, F. Patolsky, "Supersensitive detection of explosives by silicon nanowire arrays," Angewandte Chemie International Edition, 49 (2010) 6830.
[18] X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, "Silicon nanowires as chemical sensors," Chemical Physics Letters, 369 (2003) 220.
[19] J.F. Hsu, B.R. Huang, C.S. Huang, H.L. Chen, "Silicon Nanowires as pH sensor," Japanese Journal of Applied Physics, 44 (2005) 2626.
[20] L. Baba Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, T. Hadjersi, "H2 sensing properties of modified silicon nanowires," Progress in Natural Science: Materials International, 25 (2015) 101.
[21] C. Samanta, A. Ghatak, A.K. Raychaudhuri, B. Ghosh, "ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb," Nanotechnology, 30 (2019) 305501.
[22] J.H. Bang, M.S. Choi, A. Mirzaei, S. Han, H.Y. Lee, S.W. Choi, S.S. Kim, H.W. Kim, "Hybridization of silicon nanowires with TeO2 branch structures and Pt nanoparticles for highly sensitive and selective toluene sensing," Applied Surface Science, 525 (2020) 146620.
[23] S. Bansal, K. Prakash, K. Sharma, N. Sardana, S. Kumar, N. Gupta, A.K. Singh, "A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response," Nanotechnology, 31 (2020) 405205.
[24] A. Ghadakchi, Y. Abdi, "Reduced graphene oxide/silicon nanowire heterojunction for high sensitivity and broadband photodetector," IEEE Sensors Letters, 3 (2019) 1.
[25] H.D. Um, A. Solanki, A. Jayaraman, R.G. Gordon, F. Habbal, "Electrostatically doped silicon nanowire arrays for multispectral photodetectors," ACS Nano, 13 (2019) 11717.
[26] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li, Y.H. Tsang, "Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction," Solar Energy Materials and Solar Cells, 182 (2018) 272.
[27] G. Ma, R. Du, Y.-n. Cai, C. Shen, X. Gao, Y. Zhang, F. Liu, W. Shi, W. Du, Y. Zhang, "Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides," Solar Energy Materials and Solar Cells, 193 (2019) 163.
[28] S. Kato, Y. Kurokawa, K. Gotoh, T. Soga, "Silicon nanowire heterojunction solar cells with an Al2O3 passivation film fabricated by atomic layer deposition," Nanoscale research letters, 14 (2019) 99.
[29] D. Yu, C. Lee, I. Bello, X. Sun, Y. Tang, G. Zhou, Z. Bai, Z. Zhang, S. Feng, "Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature," Solid State Communications, 105 (1998) 403.
[30] R.A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, S. Scalese, D. Spucches, A. La Magna, "Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm," ACS Omega, 4 (2019) 17967.
[31] M.Y. Tabassi, R.B. Zaghouani, M. Khelil, K. Khirouni, W. Dimassi, "Study of indium catalyst thickness effect on PECVD-grown silicon nanowires properties," Journal of Materials Science: Materials in Electronics, 28 (2017) 9717.
[32] M. Hývl, M. Müller, J. Stuchlík, M. Šilhavík, J. Kočka, A. Fejfar, J. Červenka, "Nucleation and growth of metal-catalyzed silicon nanowires under plasma," Nanotechnology, 31 (2020) 225601.
[33] Y. Li, J. Dykes, T. Gilliam, N. Chopra, "A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles," Nanoscale, 9 (2017) 5263.
[34] S.L. Cheng, C.H. Chung, H.C. Lee, "A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)Si substrates," Journal of The Electrochemical Society, 155 (2008) D711.
[35] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, Y. Shi, "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration," Nanoscale Research Letters, 7 (2012) 1.
[36] M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaibi, "Highly efficient silicon nanowire surface passivation by bismuth nano-coating for multifunctional Bi@SiNWs heterostructures," Nanomaterials (Basel), 10 (2020) 1434.
[37] L.U. Vinzons, L. Shu, S. Yip, C.Y. Wong, L.L.H. Chan, J.C. Ho, "Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching," Nanoscale research letters, 12 (2017) 385.
[38] S.M. Thalluri, J. Borme, D. Xiong, J. Xu, W. Li, I. Amorim, P. Alpuim, J. Gaspar, H. Fonseca, L. Qiao, L. Liu, "Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an investigation on the effect of wire diameter, length and inter-wire spacing," Sustainable Energy & Fuels, 2 (2018) 978.
[39] Y. Zhang, Z. Fan, W. Zhang, Q. Ma, Z. Jiang, D. Ma, "High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles," AIP Advances, 8 (2018) 055309.
[40] S. Merzsch, F. Steib, H.S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, A. Waag, "Production of vertical nanowire resonators by cryogenic-ICP–DRIE," Microsystem Technologies, 20 (2013) 759.
[41] B.D. Choudhury, R. Casquel, M.J. Bañuls, F.J. Sanza, M.F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C.A. Barrios, S. Anand, "Silicon nanopillar arrays with SiO2 overlayer for biosensing application," Optical Materials Express, 4 (2014) 1345.
[42] X. Leng, C. Wang, Z. Yuan, "Progress in metal-assisted chemical etching of silicon nanostructures," Procedia CIRP, 89 (2020) 26.
[43] B. Zhou, X. Li, T. Shi, G. Liu, H. Cao, Y. Wang, "Synthesis and morphology control of diluted Si nanowire arrays by metal-assisted chemical etching and thermal oxidation based on nanosphere lithography," Journal of Materials Science, 52 (2017) 6449.
[44] B. Li, G. Niu, L. Sun, L. Yao, C. Wang, Y. Zhang, "Design optimization and antireflection of silicon nanowire arrays fabricated by Au-assisted chemical etching," Materials Science in Semiconductor Processing, 82 (2018) 1.
[45] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, K.J. Ziegler, "Controlling the geometries of Si nanowires through tunable nanosphere lithography," ACS Applied Materials & Interfaces, 9 (2017) 7368.
[46] W.P.R. Liyanage, M. Nath, "CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion," Journal of Materials Chemistry A, 4 (2016) 14637.
[47] S. Chatterjee, E. Shkondin, O. Takayama, A. Fisher, A. Fraiwan, U.A. Gurkan, A.V. Lavrinenko, G. Strangi, "Hydrogen gas sensing using aluminum doped ZnO metasurfaces," Nanoscale Advances, 2 (2020) 3452.
[48] S. Chen, W. Yang, J. Zhu, L. Fu, D. Li, L. Zhou, "Preparation of highly-ordered lanthanum hexaboride nanotube arrays and optimizing its field emission property by ion bombardment post-treatment," Journal of Materials Science: Materials in Electronics, 29 (2018) 10008.
[49] Z. Zhang, L. Liu, T. Shimizu, S. Senz, U. Gosele, "Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template," Nanotechnology, 21 (2010) 055603.
[50] A. Convertino, M. Cuscuna, F. Martelli, "Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers," Nanotechnology, 23 (2012) 305602.
[51] R. Epur, P.J. Hanumantha, M.K. Datta, D. Hong, B. Gattu, P.N. Kumta, "A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity," Journal of Materials Chemistry A, 3 (2015) 11117.
[52] J. Rong, X. Fang, M. Ge, H. Chen, J. Xu, C. Zhou, "Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes," Nano Research, 6 (2013) 182.
[53] C. Wang, J. Wen, F. Luo, B. Quan, H. Li, Y. Wei, C. Gu, J. Li, "Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation," Journal of Materials Chemistry A, 7 (2019) 15113.
[54] Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, H. Duan, "Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching," Nanotechnology, 27 (2016) 365302.
[55] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Duan, T. Yang, X. Zhang, C. Zheng, X. Zhang, "Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application," Applied Physics Letters, 102 (2013) 163906.
[56] Y.Y. Kim, H.J. Kim, J.H. Jeong, J. Lee, J.H. Choi, J.Y. Jung, J.H. Lee, H. Cheng, K.W. Lee, D.G. Choi, "Facile fabrication of silicon nanotube arrays and their application in lithium-ion batteries " Advanced Engineering Materials, 18 (2016) 1349.
[57] Y.M. Tseng, R.Y. Gu, S.L. Cheng, "Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties," Applied Surface Science, 508 (2020) 145223.
[58] A.B. Dheyab, L.A. Wali, A.M. Alwan, I.A. Naseef, "Perfect incorporation of AuNPs on the p-n+ porous silicon for highly-efficient solar cells," Optik, 198 (2019) 163317.
[59] A.M. Alwan, A.B. Dheyab, "Room temperature CO2 gas sensors of AuNPs/mesoPSi hybrid structures," Applied Nanoscience, 7 (2017) 335.
[60] M. Skrabic, M. Kosovic, M. Gotic, L. Mikac, M. Ivanda, O. Gamulin, "Near-infrared surface-enhanced raman scattering on silver-coated porous silicon photonic crystals," Nanomaterials (Basel), 9 (2019) 421.
[61] H.A. Hadi, R.A. Ismail, N.J. Almashhadani, "Preparation and characteristics study of polystyrene/porous silicon photodetector prepared by electrochemical etching," Journal of Inorganic and Organometallic Polymers and Materials, 29 (2019) 1100.
[62] S. Thiyagu, H.J. Syu, C.C. Hsueh, C.T. Liu, T.C. Lin, C.F. Lin, "Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells," RSC Advances, 5 (2015) 13224.
[63] A.S. Islam, M.A. Sobhan, A.B.M. Ismail, "Performance enhancement of bulk heterojunction hybrid solar cell using macroporous silicon," Rajshahi University Journal of Science and Engineering, 43 (2015) 11.
[64] G. Barillaro, A. Nannini, M. Piotto, "Electrochemical etching in HF solution for silicon micromachining," Sensors and Actuators A: Physical, 102 (2002) 195.
[65] F.A. Harraz, "Porous silicon chemical sensors and biosensors: a review," Sensors and Actuators B: Chemical, 202 (2014) 897.
[66] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle, U. König, "Random and ordered macropore formation in p-type silicon," Journal of the Electrochemical Society, 149 (2001) G70.
[67] H. Okayama, K. Fukami, R. Plugaru, T. Sakka, Y.H. Ogata, "Ordering and disordering of macropores formed in prepatterned p-type silicon," Journal of the Electrochemical Society, 157 (2009) D54.
[68] V. Lehmann, H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon," Journal of the Electrochemical Society, 137 (1990) 653.
[69] H. Lu, H. Zhang, M. Jin, T. He, G. Zhou, L. Shui, "Two-layer microstructures fabricated by one-step anisotropic wet etching of Si in KOH solution," Micromachines, 7 (2016) 19.
[70] C. Cozzi, G. Polito, L.M. Strambini, G. Barillaro, "Electrochemical preparation of In-silicon hierarchical networks of regular out-of-plane macropores interconnected by secondary In-plane pores through controlled inhibition of breakdown effects," Electrochimica Acta, 187 (2016) 552.
[71] C.M. Zhou, D. Gall, "Surface patterning by nanosphere lithography for layer growth with ordered pores," Thin Solid Films, 516 (2007) 433.
[72] H. Asoh, K. Uchibori, S. Ono, "Anisotropic chemical etching of silicon through anodic oxide films formed on silicon coated with microspheres," Semiconductor Science and Technology, 26 (2011) 102001.
[73] S.L. Cheng, Y.H. Lin, S.W. Lee, T. Lee, H. Chen, J.C. Hu, L.T. Chen, "Fabrication of size-tunable, periodic Si nanohole arrays by plasma modified nanosphere lithography and anisotropic wet etching," Applied Surface Science, 263 (2012) 430.
[74] C.W. Roske, E.J. Popczun, B. Seger, C.G. Read, T. Pedersen, O. Hansen, P.C. Vesborg, B.S. Brunschwig, R.E. Schaak, I. Chorkendorff, H.B. Gray, N.S. Lewis, "Comparison of the performance of CoP-coated and Pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g)," The Journal of Physical Chemistry Letters, 6 (2015) 1679.
[75] D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X. Zheng, "Hybrid Si microwire and planar solar cells: passivation and characterization," Nano Letters, 11 (2011) 2704.
[76] K. Seo, Y.J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K.B. Crozier, "Si microwire solar cells: improved efficiency with a conformal SiO2 layer," ACS Nano, 7 (2013) 5539.
[77] L. Li, C.P. Wong, 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), (2016) 1746.
[78] Y. Li, W. Shi, A. Gupta, N. Chopra, "Morphological evolution of gold nanoparticles on silicon nanowires and their plasmonics," RSC Advances, 5 (2015) 49708.
[79] Y. Wang, V. Schmidt, S. Senz, U. Gosele, "Epitaxial growth of silicon nanowires using an aluminium catalyst," Nature Nanotechnology, 1 (2006) 186.
[80] Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, "Metal-assisted chemical etching of silicon: a review," Advanced Materials, 23 (2011) 285.
[81] H.D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y.J. Yu, P. Duane, M. Wober, K. Seo, "Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications," Scientific Reports, 5 (2015) 11277.
[82] F. Sun, Z. Tan, Z. Hu, J. Chen, J. Luo, X. Wu, G. Cheng, R. Zheng, "Ultrathin silicon nanowires produced by a Bi-metal-assisted chemical etching method for highly stable lithium-ion battery anodes," Nano, 15 (2020) 2050076.
[83] J. Kim, H. Rhu, W. Lee, "A continuous process for Si nanowires with prescribed lengths," Journal of Materials Chemistry, 21 (2011) 15889.
[84] P.J. Chien, T.C. Wei, C.Y. Chen, "High-speed and direction-controlled formation of silicon nanowire arrays assisted by electric field," Nanoscale Research Letters, 15 (2020) 25.
[85] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, X. Shi, T.M. Gill, X. Zheng, "On-demand production of hydrogen by reacting porous silicon nanowires with water," Nano Research, 13 (2020) 1459.
[86] N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, "Wettability switching techniques on superhydrophobic surfaces," Nanoscale Research Letters, 2 (2007) 577.
[87] M. Callies, D. Quéré, "On water repellency," Soft Matter, 1 (2005) 55.
[88] K. Ma, T.S. Chung, R.J. Good, "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide," Journal of Polymer Science Part B: Polymer Physics, 36 (1998) 2327.
[89] R.H. Fowler, L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119 (1928) 173.
[90] C.H. Kuo, J.M. Wu, S.J. Lin, "Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics," Nanoscale research letters, 8 (2013) 1.
[91] F. Giubileo, A. Di Bartolomeo, L. Iemmo, G. Luongo, F. Urban, "Field emission from carbon nanostructures," Applied Sciences, 8 (2018) 526.
[92] Y. Shen, N. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She, S. Deng, "An analytical modeling of field electron emission for a vertical wedged ordered nanostructure," Advanced Electronic Materials, 3 (2017) 1700295.
[93] H.C. Wu, H.Y. Tsai, H.T. Chiu, C.Y. Lee, "Silicon rice-straw array emitters and their superior electron field emission," ACS Applied Materials & Interfaces, 2 (2010) 3285.
[94] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard, K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, 76 (2000) 2071.
[95] U. Ray, D. Banerjee, B. Das, N.S. Das, S.K. Sinha, K.K. Chattopadhyay, "Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires," Materials Research Bulletin, 97 (2018) 232.
[96] Z. Qian, X. Liu, Y. Yang, Q. Yin, "Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization," Journal of Nanoscience and Nanotechnology, 14 (2014) 6209.
[97] S.L. Cheng, H.C. Lin, Y.H. Huang, S.C. Yang, "Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics," RSC Advances, 7 (2017) 23935.
[98] S. Maity, N.S. Das, K.K. Chattopadhyay, "Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission," Physica Status Solidi (B), 250 (2013) 1919.
[99] S.G. Jang, H.K. Yu, D.G. Choi, S.M. Yang, "Controlled fabrication of hollow metal pillar arrays using colloidal masks," Chemistry of Materials, 18 (2006) 6103.
[100] Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V.N. Singh, R.K. Gupta, B.K. Gupta, "High-performance stable field emission with ultralow turn on voltage from rGO conformal coated TiO2 nanotubes 3D arrays," Scientific Reports, 5 (2015) 11612.
[101] S.C. Hung, Y.J. Chen, "Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO2 nanotube arrays," Materials Research Bulletin, 79 (2016) 115.
[102] W.D. Zhu, C.W. Wang, J.B. Chen, Y. Li, J. Wang, "Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process," Applied Surface Science, 301 (2014) 525.
[103] X.P. Shen, A.H. Yuan, Y.M. Hu, Y. Jiang, Z. Xu, Z. Hu, "Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays," Nanotechnology, 16 (2005) 2039.
[104] J. Yuan, H. Li, Q. Wang, X. Zhang, S. Cheng, H. Yu, X. Zhu, Y. Xie, "Facile fabrication of aligned SnO2 nanotube arrays and their field-emission property," Materials Letters, 118 (2014) 43.
[105] M.S. Wu, J.T. Lee, Y.Y. Wang, C.C. Wan, "Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition," The Journal of Physical Chemistry B, 108 (2004) 16331.
[106] P.D. Joshi, C.M. Tank, S.A. Kamble, D.S. Joag, S.V. Bhoraskar, V.L. Mathe, "Arc plasma synthesized Si nanotubes: A promising low turn on field emission source," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33 (2015) 021806.
[107] C. Mu, Y. Yu, W. Liao, X. Zhao, D. Xu, X. Chen, D. Yu, "Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition," Applied Physics Letters, 87 (2005) 113104.
[108] R. Yao, J. She, S. Deng, J. Chen, N. Xu. “Field emission from vertically aligned silicon nanotubes.” in 2007 IEEE 20th International Vacuum Nanoelectronics Conference. 2007. IEEE.
[109] H.J. Geipel, N. Hsieh, M.H. Ishaq, C.W. Koburger, F.R. White, "Composite silicide gate electrodes-interconnections for VLSI device technologies," IEEE Journal of Solid-State Circuits, 15 (1980) 482.
[110] M. Tsai, H. Chao, L. Ephrath, B. Crowder, A. Cramer, R. Bennett, C. Lucchese, M. Wordeman, "One‐micron polycide (WSi2 on Poly‐Si) MOSFET technology," Journal of the Electrochemical Society, 128 (1981) 2207.
[111] M.E. Alperin, T.C. Hollaway, R.A. Haken, C.D. Gosmeyer, R.V. Karnaugh, W.D. Parmantie, "Development of the self-aligned titanium silicide process for VLSI applications," IEEE Journal of Solid-State Circuits, 20 (1985) 61.
[112] H. Iwai, T. Ohguro, S.i. Ohmi, "NiSi salicide technology for scaled CMOS," Microelectronic Engineering, 60 (2002) 157.
[113] T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, "Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI," IEEE Transactions on Electron Devices, 42 (1995) 915.
[114] Y.W. Ok, T.Y. Seong, C.J. Choi, K.N. Tu, "Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing," Applied Physics Letters, 88 (2006) 043106.
[115] J. Kim, E.-S. Lee, C.-S. Han, Y. Kang, D. Kim, W.A. Anderson, "Observation of Ni silicide formations and field emission properties of Ni silicide nanowires," Microelectronic Engineering, 85 (2008) 1709.
[116] W.L. Chiu, C.H. Chiu, J.Y. Chen, C.W. Huang, Y.T. Huang, K.C. Lu, C.L. Hsin, P.H. Yeh, W.W. Wu, "Single-crystalline δ-Ni2Si nanowires with excellent physical properties," Nanoscale Research Letters, 8 (2013) 1.
[117] L. Romano, J. Vila-Comamala, K. Jefimovs, M. Stampanoni, "Effect of isopropanol on gold assisted chemical etching of silicon microstructures," Microelectronic Engineering, 177 (2017) 59.
[118] X.G. Zhang, S.D. Collins, R.L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution," Journal of The Electrochemical Society, 136 (2019) 1561.
[119] R.L. Smith, S.D. Collins, "Porous silicon formation mechanisms," Journal of Applied Physics, 71 (1992) R1.
[120] X.G. Zhang, "Mechanism of pore formation on n‐type silicon," Journal of The Electrochemical Society, 138 (2019) 3750.
[121] B. Miao, J. Zhang, X. Ding, D. Wu, Y. Wu, W. Lu, J. Li, "Improved metal assisted chemical etching method for uniform, vertical and deep silicon structure," Journal of Micromechanics and Microengineering, 27 (2017) 055019.
[122] Y.H. Liang, S.Y. Yu, C.L. Hsin, C.W. Huang, W.W. Wu, "Growth of single-crystalline cobalt silicide nanowires with excellent physical properties," Journal of Applied Physics, 110 (2011) 074302.
[123] W.J. Huang, S.M. Yang, T.T. Liao, K.C. Lu, "Synthesis of morphology-improved single-crystalline iron silicide nanowires with enhanced physical characteristics," CrystEngComm, 23 (2021) 3270. |