參考文獻 |
[1] S. Lin, Y. Lu, S. Feng, Z. Hao, Y. Yan, "A high current density direct-current generator based on a moving van der waals schottky diode," Advanced Materials Interfaces, 31 (2019) 1804398.
[2] T. Kennedy, M. Brandon, F. Laffir, K. M. Ryan, "Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes," Journal of Power Sources, 359 (2017) 601.
[3] B. Miao, J. Zhang, X. Ding, D. Wu, Y. Wu, W. Lu, J. Li, "Improved metal assisted chemical etching method for uniform, vertical and deep silicon structure," Journal of Micromechanics and Microengineering, 27 (2017) 055019.
[4] Y. Chen, S. Aslanoglou, T. Murayama, G. Gervinskas, L. I. Fitzgerald, S. Sriram, J. Tian, A. P. R. Johnston, Y. Morikawa, K. Suu, R. Elnathan, N. H. Voelcker, "Silicon-nanotube-mediated intracellular delivery enables ex vivo gene editing," Adv Mater, 32 (2020) 2000036.
[5] S. Lv, Z. Li, S. Su, L. Lin, Z. Zhang, W. Miao, "Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity," RSC Advances, 4 (2014) 31729.
[6] S. Chandrasekaran, T. Nann, N. H. Voelcker, "Nanostructured silicon photoelectrodes for solar water electrolysis," Nano Energy, 17 (2015) 308.
[7] A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu, G. Wu, "Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation," Nano Energy, 27 (2016) 359.
[8] T. G. Chen, P. Yu, S. W. Chen, F. Y. Chang, B. Y. Huang, Y. C. Cheng, J. C. Hsiao, C. K. Li, Y. R. Wu, "Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics," Progress in Photovoltaics: Research and Applications, 22 (2014) 452.
[9] N. S. A. Eom, H. B. Cho, Y. Song, W. Lee, T. Sekino, Y. H. Choa, "Room-temperature H2 gas sensing characterization of graphene-doped porous silicon via a facile solution dropping method," Sensors, 17 (2017) 2750.
[10] S. Huang, Q. Wu, Z. Jia, X. Jin, X. Fu, H. Huang, X. Zhang, J. Yao, J. Xu, "Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation," Advanced Optical Materials, 8 (2020) 1901808.
[11] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, M. Kusko, "Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector," ACS Applied Materials & Interfaces, 9 (2017) 29234.
[12] J. Q. Liu, Y. Gao, G. A. Wu, X. W. Tong, C. Xie, L. B. Luo, L. Liang, Y. C. Wu, "Silicon/Perovskite core-shell heterojunctions with light-trapping effect for sensitive self-driven near-infrared photodetectors," ACS Applied Materials & Interfaces, 10 (2018) 27850.
[13] C. Y. Wu, Z.Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, L. Wang, L. B. Luo, "Core–shell silicon nanowire array–Cu nanofilm schottky junction for a sensitive self-powered near-infrared photodetector," Journal of Materials Chemistry C, 4 (2016) 10804.
[14] S. Nichkalo, A. Druzhinin, A. Evtukh, O. Bratus’, O. Steblova, "Silicon nanostructures produced by modified MacEtch method for antireflective Si surface," Nanoscale Research Letters, 12 (2017) 1.
[15] M. K. Sahoo, P. Kale, "Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review," Journal of Materiomics, 5 (2019) 34.
[16] C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, W. Xie, "Self-powered, high-speed and visible–near infrared response of MoO3-X/n-Si heterojunction photodetector with enhanced performance by interfacial engineering," ACS Applied Materials & Interfaces, 7 (2015) 25981.
[17] L. Chen, W. Tian, L. Min, F. Cao, L. Li, "Si/CuIn0.7Ga0.3Se2 core–shell heterojunction for sensitive and self‐driven UV–vis–NIR broadband photodetector," Advanced Optical Materials, 7 (2019) 1900023.
[18] A. Ghadakchi, Y. Abd, "Reduced graphene oxide/silicon nanowire heterojunction for high sensitivity and broadband photodetector," IEEE Sensors Letters, 3 (2019) 1.
[19] S. E. Han, G. Chen, "Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics," Nano Letters, 10 (2010) 1012.
[20] J. Oh, T. G. Deutsch, H. C. Yuan, H. M. Branz, "Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting.," Energy & Environmental Science, 4 (2011) 1690.
[21] J. Yang, L. Tang, W. Luo, J. Shen, D. Zhou, S. Feng, X. Wei, H. Shi, "Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors," ACS Applied Materials & Interfaces, 11 (2019) 30421.
[22] T. Subramania, C. C. Hsueha, H. Syua, C. T. Liua, S. T. Yangb, C. F. Lin, "Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells," RSC Advances, 6 (2016) 12374.
[23] H. Wang, Z. Zhang, L. M. Wong, S. Wang, Z. Wei, G. P. Li, G. Xing, D. Guo, D. Wang, T. Wu, "Shape-controlled fabrication of micro/nanoscale triangle, square, wire-like, and hexagon pits on silicon substrates induced by anisotropic diffusion and silicide sublimation," ACS Nano, 4 (2010) 2901.
[24] S. C. Shiu, S. C. Hung, H. J. Syu, C. F. Lin, "Fabrication of silicon nanostructured thin film and its transfer from bulk wafers onto alien substrates," Journal of the Electrochemical Society, 158 (2010) D95.
[25] R. Liu, F. Zhang, C. Con, B. Cui, B. Sun, "Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching," Nanoscale Research Letters, 8 (2013) 1.
[26] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle, U. König, "Random and ordered macropore formation in p-type silicon," Journal of the Electrochemical Society, 149 (2001) G70.
[27] F. A. Harraz, K. Kamada, K. Kobayashi, T. Sakka, Y. H. Ogata, "Random macropore formation in p-type silicon in HF-containing organic solutions," Journal of the Electrochemical Society, 152 (2005) C213.
[28] A. M. Mebed, A. M. Abd-Elnaiem, W. D. Malsche, "Influence of anodizing parameters on the electrochemical characteristics and morphology of highly doped p-type porous silicon," Silicon, 13 (2021) 819.
[29] S. H. Altinoluk, H. E. Ciftpinar, O. Demircioglu, R. Turan, "Periodic micro hole texturing with metal assisted chemical etching for solar cell applications: Dependence of etch rate on orientation," Journal of Materials Science and Nanotechnology, 5 (2017) 102.
[30] L. Kong, Y. Zhao, B. Dasgupta, Y. Ren, K. Hippalgaonkar, X. Li, W. K. Chim, S. Y. Chiam, "Minimizing Isolate catalyst motion in metal-assisted chemical etching for deep trenching of silicon nanohole array," ACS Applied Materials & Interfaces, 9 (2017) 20981.
[31] S. H. Baek, S. Lee, J. H. Bae, C. W. Hong, M. J. Park, H. Park, M. C. Baek, S. W. Nam, "Nanopillar and nanohole fabrication via mixed lithography," Materials Research Express, 7 (2020) 035008.
[32] L. Rahmasari, M. F. Abdullah, A. R. M. Zain, A. M. Hashim, "Silicon nanohole arrays fabricated by electron beam lithography and reactive ion etching," Sains Malaysiana, 48 (2019) 1157.
[33] Y. M. Tseng, R. Y. Gu, C. W. Chang, S. L. Cheng, "Facile fabrication of periodic arrays of vertical Si nanoholes on (001)Si substrate with broadband light absorption properties," Applied Surface Science, 480 (2019) 131.
[34] R. Dahiya, N. Yogeswaran, F. Liu, L. Manjakkal, E. Burdet, V. Hayward, H. Jorntell, "Large-area soft e-skin: The challenges beyond sensor designs," Proceedings of the IEEE, 107 (2019) 2016.
[35] Y. Yang, W. Gao, "Wearable and flexible electronics for continuous molecular monitoring," Chemical Society Reviews, 48 (2019) 1465.
[36] W. Dang, L. Manjakkal, W. T. Navaraj, L. Lorenzelli, V. Vinciguerra, R. Dahiya, "Stretchable wireless system for sweat pH monitoring," Biosensors and Bioelectronics, 107 (2018) 192.
[37] S. Li, Z. Ma, Z. Cao, L. Pan, Y. Shi, "Advanced wearable microfluidic sensors for healthcare monitoring," Small, 16 (2020) 1903822.
[38] Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei, Z. Liu, "Carbon-nanomaterial-based flexible batteries for wearable electronics," Advanced Materials Interfaces, 31 (2019) 800716.
[39] C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang, L. Qu, "Recent progress in graphene‐based electrodes for flexible batteries," InfoMat, 2 (2020) 509.
[40] E. O. Polat, O. Balci, N. Kakenov, H. B. Uzlu, C. Kocabas, R. Dahiya, "Synthesis of large area graphene for high performance in flexible optoelectronic devices," Scientific Reports, 5 (2015) 1.
[41] S. Jeong, M. D. McGehee, Y. Cui, "All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency," Nature Communications, 4 (2013) 1.
[42] J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, Y. Cui, ""Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression," Acs Nano 9(2015) 6522.
[43] J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, J. Ye, "Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications," Advanced Energy Materials, 6 (2016) 1501793.
[44] X. Wang, H. Zhang, R. Yu, L. Dong, D. Peng, A. Zhang, Y. Zhang, H. Liu, C. Pan, Z. L. Wang, "Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process," Advanced Materials Interfaces, 27 (2015) 2324.
[45] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan, Y. Shi, "Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires," IEEE Electron Device Letters, 39 (2018) 1069.
[46] C. Kim, H. Ahn, T. Ji, "Flexible pressures ensors based on silicon nanowire array built by metal-assisted chemical etching," IEEE Electron Device Letters, 41 (2020) 1233.
[47] Y. Kumaresan, S. Ma, D. Shakthivel, R. Dahiya, "AlN ultra-thin chips based flexible piezoelectric tactile sensors,"2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), (2021) 1.
[48] Z. Ke, H. Qing, L. Liang, R. Yi, "Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted," Ultrasonics, 80 (2017) 9.
[49] S. Thiyagu, C. C. Hsueh, C. T. Liu, H. J. Syu, T. C. Linb, C. F. Lin, "Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface," Nanoscale, 6 (2014) 3361.
[50] Y. Lv, J. I. Ma, J. Zou, X. Wang, "Research of anisotropic etching in KOH water solution with isopropyl alcohol," IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, (2002).
[51] N. Burham, A. A. Hamzah, B. Y. Majlis, "Effect of isopropyl alcohol (IPA) on etching rate and surface roughness of silicon etched in KOH solution," 2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), (2015).
[52] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials," Nano Letters, 13 (2013) 4393.
[53] K. P. Rola, I. Zubel, "Triton surfactant as an additive to KOH silicon etchant," Journal of Microelectromechanical Systems, 22 (2013) 1373.
[54] F. Baia, M. Lib, D. Song, H. Yub, B. Jiangb, Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Applied Surface Science, 273 (2013) 107.
[55] M. L. Brongersma, N. J. Halas, P. Nordlander, "Plasmon-induced hot carrier science and technology," Nature Nanotechnology, 10 (2015) 25.
[56] C. Zong, M. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, B. Ren, "Surface-enhanced raman spectroscopy for bioanalysis: Reliability and challenges," Chemical Reviews 118 (2018) 4946.
[57] S. Asadi, L. Bianchi, M. D. Landro, S. Korganbayev, E. Schena, P. Saccomandi, "Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application," Journal of Biophotonics, 14 (2021) 202000161.
[58] M. D’Acunto, P. Cioni, E. Gabellieri, G. Presciuttini, "Exploiting gold nanoparticles for diagnosis and cancer treatments," Nanotechnology, 32 (2021) 192001.
[59] X. Yang, H. Zhong, Y. Zhu, J. Shen, C. Li, "Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays," Dalton Transactions, 42 (2013) 14324.
[60] Y. Li, J. Dykes, T. Gilliam, N. Chopra, "A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles," Nanoscale, 9 (2017) 5263.
[61] S. Chakraborti, R. N. Basu, S. K. Panda, "Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection," Plasmonics, 13 (2017) 1057.
[62] G. Xu, R. Lu, J. Liu, H.Y . Chiu, R. Hui, J. Z. Wu, "Photodetection based on ionic liquid gated plasmonic Ag nanoparticle/graphene nanohybrid field effect transistors," Advanced Optical Materials, 2 (2014) 729.
[63] W. Zhang, W. Wang, H. Shia, Y. Lianga, J. Fua, M. Zhua, "Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles," Solar Energy Materials and Solar Cells, 180 (2018) 25.
[64] H. Li, Z. Li, Y. Yu, Y. Ma, W. Yang, F. Wang, X. Yin, X. Wang, "Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures," The Journal of Physical Chemistry C, 121 (2017) 12071.
[65] X. Wang, K. Q. Peng, Y. Hu, F. Q. Zhang, B. Hu, L. Li, M. Wang, X. M. Meng, S. T. Lee, "Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation," Nano Letters, 14 (2014) 18.
[66] H. Chen, Q. Zhao, Y. Wang, S. Mu, H. Cui, J. Wang, T. Kong, X. Du, "Near-infrared light-driven controllable motions of gold-hollow-microcone array," ACS Applied Materials & Interfaces, 11 (2019) 15927.
[67] A. Roy, A. Maiti, T. K. Chini, B. Satpat, "Annealing induced morphology of silver nanoparticles on pyramidal silicon surface and their application to surface-enhanced raman scattering," ACS Applied Materials & Interfaces, 9 (2017) 34405.
[68] V. S. Vendamani, S. V. S. N. Rao, S. V. Rao, D. Kanjila, A. P. Pathak, "Three-dimensional hybrid silicon nanostructures for surface enhanced raman spectroscopy based molecular detection," Journal of Applied Physics, 123 (2018) 014301.
[69] R. Lu, J. Sha, W. Xia, Y. Fang, L. Gu, Y. Wang, "A 3D-SERS substrate with high stability: Silicon nanowire arrays decorated by silver nanoparticles," CrystEngComm, 15 (2013) 6207.
[70] S. Bai, Y. Du, C. Wang, J. Wu, K. Sugioka, "Reusable surface-enhanced raman spectroscopy substrates made of silicon nanowire array coated with silver nanoparticles fabricated by metal-assisted chemical etching and photonic reduction," Nanomaterials 9(2019) 1531.
[71] I. Kochylas, S. Gardelis, V. Likodimos, P. Falaras, A. G. Nassiopoulou, "Improved surface-enhanced-raman scattering sensitivity using Si nanowires/silver nanostructures by a single step metal-assisted chemical etching," Nanomaterials, 11 (2021) 1760.
[72] P. P. Sidi, N. R. Poespawati, D. Hartanto, "Solar Cell," Chapters, (2011).
[73] Y. Ajiki, T. Kan, M. Yahiro, A. Hamada, J. Adachi, C. Adachi, K. Matsumoto, I. Shimoyama, "Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars," Applied Physics Letters, 108 (2016) 151102.
[74] B. Wang, Y. Zhu, J. Dong, J. Jiang, Q. Wang, S. Li, X. Wang, "Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication," Nano Energy, 70 (2020) 104544.
[75] L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, F. X. Liang, "Near‐infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky junction," Advanced Functional Materials, 24 (2014) 2794.
[76] X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, "High detectivity graphene‐silicon heterojunction photodetector," Small, 12 (2016) 595.
[77] L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, F. X. Liang, "A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity," Journal of Materials Chemistry C, 3 (2015) 4723.
[78] J. Wang, X. Chen, W. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, R. Ji, "Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K," Applied Physics Letters, 99 (2011) 113508.
[79] J. Deng, Z. Guo, Y. Zhang, X. Cao, S. Zhang, Y. Sheng, H. Xu, W. Bao, J. Wan, "MoS2/silicon-on-insulator heterojunction field-effect-transistor for high-performance photodetection," IEEE Electron Device Letters, 40 (2019) 423.
[80] V. Dhyani, S. Das, "High-speed scalable silicon-MoS2 PN heterojunction photodetectors," Scientific Reports, 7 (2017) 44243.
[81] Z. Lou, L. Zeng, Y. Wang, D. Wu, T. Xu, Z. Shi, Y. Tian, X. Li, Y. H. Tsang, "High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared," Optics Letters, 42 (2017) 3335.
[82] P. Xiao, J. Mao, K. Ding, W. Luo, W. Hu, X. Zhang, X. Zhang, J. Jie, "Solution‐processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra‐broadband photodetection," Advanced Materials 30 (2018) 1801729.
[83] C. Xie, L. Zeng, Z. Zhang, Y. H. Tsang, L. Luo, J. H. Lee, "High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate," Nanoscale, 10 (2018) 15285.
[84] E. Wu, D. Wu, C. Jia, Y.e. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, X. Li, "In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared," ACS Photonics, 6 (2019) 565.
[85] W. Chen, T. Kan, Y. Ajiki, K. Matsumoto, I. Shimoyama, "NIR spectrometer using a schottky photodetector enhanced by grating-based SPR," Optics Express, 24 (2016) 25797.
[86] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection," Nanotechnology, 28 (2017) 275202.
[87] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei, S. J. Chua, "Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure," Nanotechnology, 30 (2019) 075204.
[88] V. Lehmann, H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon," Journal of The Electrochemical Society, 137 (2019) 653.
[89] L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S. T. Lee, "MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high‐detectivity, self‐driven visible–near infrared photodetectors," Advanced Functional Materials, 25 (2015) 2910.
[90] L. Chen, W. Tian, C. Sun, F. Cao, L. Li, "Structural engineering of Si/TiO2/P3HT heterojunction photodetectors for a tunable response range," ACS Applied Materials & Interfaces, 11 (2019) 3241.
[91] Z. Wang, X. Zhang, D. Wu, J. Guo, Z. Zhao, Z. Shi, Y. Tian, X. Huang, X. Li, "Construction of mixed-dimensional WS2/Si heterojunctions for high-performance infrared photodetection and imaging applications," Journal of Materials Chemistry C, 8 (2020) 6877.
[92] D. Periyanagounder, P. Gnanasekar, P. Varadhan, J. H. He, J. Kulandaivel, "High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode," Journal of Materials Chemistry C, 6 (2018) 9545.
[93] N. Rosli, M. M. Halim, K. M. Chahrour, M. R. Hashim, "Incorporation of zinc oxide on macroporous silicon enhanced the sensitivity of macroporous silicon MSM photodetector," ECS Journal of Solid State Science and Technology, 9 (2020) 105005.
[94] D. H. Kim, W. Lee, J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale, 10 (2018) 17705.
[95] J. M. Choi, H. Y. Jang, A. R. Kim, J. D. Kwon, B. Cho, M. H. Park, Y. Kim, "Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis," Nanoscale, 13 (2021) 672.
[96] M. Hossain, G. S. Kumar, S. N. B. Prabhava, E. D. Sheerin, D. McCloskey, S. Acharya, K. D. M. Rao, J. J. Boland, "Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications," ACS Nano, 12 (2018) 4727. |