參考文獻 |
[1] K. V. Klitzing, G. Dorda, M. Pepper. "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance." Phys. Rev. Lett. 45.6 (1980) 494.
[2] L. Feng, S. Li, Y. Li, H. L. Li, J. Zhang, Zhai, D. Zhu. "Super‐hydrophobic surfaces: from natural to artificial." Adv. Mater. 14.24 (2002) 1857-1860.
[3] N. J. Shirtcliffe, F. B. Pyatt, M. I. Newton, G. McHale. "A lichen protected by a super-hydrophobic and breathable structure." J. Plant Physiol. 163.11 (2006) 1193-1197.
[4] K. Sekiguchi, K. I. Katsumata, H. Segawa, T. Nakanishi, A. Yasumori. "Fabrication of a Silica–Silica Nanoparticle Monolayer Array Nanocomposite Film on an Anodic Aluminum Oxide Substrate and Its Optical and Tribological Properties." ACS Appl. Mater. Interfaces 12.24 (2020) 27672-27681.
[5] J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. del Pilar Rodriguez-Torres, L. S. Acosta-Torres, H. S. Shin. "Nano based drug delivery systems: recent developments and future prospects." J. Nanobiotechnology 16.1 (2018) 1-33.
[6] W. Tao, D. Pan, Z. Gong, X. Peng. "Nanoporous platinum electrode grown on anodic aluminum oxide membrane: Fabrication, characterization, electrocatalytic activity toward reactive oxygen and nitrogen species." Anal. Chim. Acta 1035 (2018) 44-50.
[7] J. Chen, S. Feng, F. Gao, E. Grant, J. Xu, S. Wang, X. Lu. "Fabrication of SERS‐active substrates using silver nanofilm‐coated porous anodic aluminum oxide for detection of antibiotics." J. Food Sci. 80.4 (2015) N834-N840.
[8] C. C. Ho, K. Zhao, T. Y. Lee. "Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography." Nanoscale 6.15 (2014) 8606-8611.
[9] C. J. Jia, L. D. Sun, F. Luo, X. D. Han, L. J. Heyderman, Z. Yan, G., J. Raabe. "Large-scale synthesis of single-crystalline iron oxide magnetic nanorings." J. Am. Chem. Soc. 130.50 (2008) 16968-16977.
[10] H. Chun, M. G. Hahm, Y. Homma, R. Meritz, K. Kuramochi, L. Menon, Y. J. Jung. "Engineering low-aspect ratio carbon nanostructures: nanocups, nanorings, and nanocontainers." ACS nano 3.5 (2009): 1274-1278.
[11] Z. He, Y. Yang, H. W. Liang, J. W. Liu, S. H. Yu. "Nanowire genome: a magic toolbox for 1D nanostructures." Adv. Mater. 31.51 (2019) 1902807.
[12] L. X. Liu, W. Chen, H. B. Zhang, Q. W. Wang, F. Guan, Z. Z. Yu. "Flexible and multifunctional silk textiles with biomimetic leaf‐like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self‐derived hydrophobicity." Adv. Funct. Mater. 29.44 (2019) 1905197.
[13] S. Li, J. Wen, X. Mo, H. Long, H. Wang, J. Wang, G. Fang. "Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode." J. Power Sources 256 (2014) 206-211.
[14] S. Xu, Y. W. Yeh, G. Poirier, M. C. McAlpine, R. A. Register, N.Yao. "Flexible piezoelectric PMN–PT nanowire-based nanocomposite and device." Nano Lett. 13.6 (2013) 2393-2398.
[15] M. Toma, G. Loget, R. M. Corn. "Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films." Nano Lett. 13.12 (2013) 6164-6169.
[16] J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, J. Ye. "Enhanced electro‐optical properties of nanocone/nanopillar dual‐structured arrays for ultrathin silicon/organic hybrid solar cell applications." Adv. Energy Mater. 6.8 (2016) 1501793.
[17] N. Song, W. Wang, Y. Wu, D. Xiao, Y. Zhao. "Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes." J Phys Chem Solids 115 (2018) 148-155.
[18] W. Zhang, J. Zhang, P. Wu, G. Chai, R. Huang, F. Ma, J. Duan. "Parallel aligned nickel nanocone arrays for multiband microwave absorption." ACS Appl. Mater. Interfaces 12.20 (2020) 23340-23346.
[19] J. Martín, J. Maiz, J. Sacristan, C. Mijangos. "Tailored polymer-based nanorods and nanotubes by" template synthesis": From preparation to applications." Polymer 53.6 (2012) 1149-1166.
[20] J. Martin, C. Mijangos. "Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores." Langmuir 25.2 (2009) 1181-1187.
[21] H. Lu, G. M. Carroll, N. R. Neale, M. C. Beard. "Infrared quantum dots: Progress, challenges, and opportunities." ACS nano 13.2 (2019) 939-953.
[22] V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufrès, G. Gervais, T. Szkopek. "Two-dimensional magnetotransport in a black phosphorus naked quantum well." Nat. Commun. 6.1 (2015) 1-7.
[23] Y. Zhang, Y. Kim, M. J. Gilbert, N. Mason. "Electronic transport in a two-dimensional superlattice engineered via self-assembled nanostructures." NPJ 2D Mater. Appl. 2.1 (2018) 1-6.
[24] Y. Kim, T. I. Ryu, K. H. Ok, M. G. Kwak, S. Park, N. G. Park, J. W. Kim. "Inverted layer‐by‐layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high‐performance organic solar cells." Adv. Funct. Mater. 25.29 (2015) 4580-4589.
[25] X. P. Wei, Y. L. Luo, F. Xu, Y. S. Chen. "Sensitive conductive polymer composites based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor sensing." Synth Met 215 (2016) 216-222.
[26] T. Minamiki, Y. Sasaki, S. Su, T. Minami. "Development of polymer field-effect transistor-based immunoassays." Polym J 51.1 (2019) 1-9.
[27] C. W. Chang, M. H. Chi, C. W. Chu, H. W. Ko, Y. H. Tu, C. C. Tsai, J. T. Chen. "Microwave-annealing-induced nanowetting: a rapid and facile method for fabrication of one-dimensional polymer nanomaterials." RSC Adv. 5.35 (2015) 27443-27448
[28] T. Yanagishita, K. Nishio, H. Masuda. "Polymer through-hole membrane fabricated by nanoimprinting using metal molds with high aspect ratios." J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 25.4 (2007) L35-L38.
[29] G. N. Harakas. "Production of Colorful Aluminum Keepsakes and Gas Sensing Smart Materials: Anodizing, Dyeing, and Etching Small Aluminum Parts on a Budget." J Chem Educ 95.7 (2018) 1187-1191.
[30] F. Keller, M. S. Hunter, D. L. Robinson. "Structural features of oxide coatings on aluminum." J. Electrochem. Soc. 100.9 (1953) 411.
[31] J. Dai, J. Singh, N. Yamamoto. "The effect of nano pore size and porosity on deformation behaviors of anodic aluminum oxide membranes." SAMPE Seattle 2017 Conference and Exhibition. 2017.
[32] Y. Patel, G. Janusas, A. Palevicius, A. Vilkauskas. "Development of nanoporous AAO membrane for nano filtration using the acoustophoresis method." Sensors 20.14 (2020) 3833.
[33] O. Jessensky, F. Müller, U. Gösele. "Self-organized formation of hexagonal pore arrays in anodic alumina." Appl. Phys. Lett. 72.10 (1998) 1173-1175.
[34] G. E. Thompson. "Porous anodic alumina: fabrication, characterization and applications." Thin solid films 297.1-2 (1997) 192-201.
[35] F. Li, L. Zhang, R. M. Metzger. "On the growth of highly ordered pores in anodized aluminum oxide." Chem. Mater. 10.9 (1998) 2470-2480.
[36] A. P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele. "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina." J. Appl. Phys. 84.11 (1998) 6023-6026.
[37] H. Huang, J. Qiu, M. Sun, W. Liu, X. Wei, E. Sakai, K. Ito. "A hard coating with MAO/AAO double layers prepared on aluminum in etidronic acid by DC oxidation." Surf. Coat. Technol. 360 (2019) 307-317.
[38] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, L. Jin. "A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films." Electrochim. Acta 178 (2015) 11-17.
[39] L. Zaraska, W. J. Stępniowski, E. Ciepiela, G. D. Sulka. "The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid." Thin Solid Films 534 (2013) 155-161.
[40] W. J. Stępniowski, Z. Bojar. "Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features." Surf. Coat. Technol. 206.2-3 (2011) 265-272.
[41] L. Zaraska, G. D. Sulka, M. Jaskuła. "Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time." J Solid State Electrochem 15.11-12 (2011) 2427-2436.
[42] W. Lee, R. Ji, U. Gösele, K. Nielsch. "Fast fabrication of long-range ordered porous alumina membranes by hard anodization." Nat. Mater. 5.9 (2006) 741-747.
Keller, F., M. S. Hunter, and D. L. Robinson. "Structural features of oxide coatings on aluminum." J. Electrochem. Soc. 100.9 (1953) 411.
[43] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, A. Yasumori. "Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization." J. Electrochem. Soc. 153.9 (2006) B384.
[44] F. A. Bruera, G. R. Kramer, M. L. Vera, A. E. Ares. "Synthesis and morphological characterization of nanoporous aluminum oxide films by using a single anodization step." Coatings 9.2 (2019) 115.
[45] H. Masuda, K. Fukuda. "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina." science 268.5216 (1995) 1466-1468.
[46] H. Masuda, K. Yada, A. Osaka. "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution." Jpn. J. Appl. Phys. 37.11A (1998) L1340.
[47] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura. "Highly ordered nanochannel-array architecture in anodic alumina." Appl. Phys. Lett. 71.19 (1997) 2770-2772.
[48] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura. "Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina." Appl. Phys. Lett. 78.6 (2001) 826-828.
[49] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura. "Square and triangular nanohole array architectures in anodic alumina." Adv. Mater. 13.3 (2001) 189-192.
[50] P. A. Jacquet. "On the anodic behavior of copper in aqueous solutions of orthophosphoric acid." Trans. Electrochem. Soc. 69.1 (1936) 629.
[51] C. Y. Liu, A. Datta, Y. L. Wang. "Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces." Appl. Phys. Lett. 78.1 (2001) 120-122.
[52] D. Landolt. "Fundamental aspects of electropolishing." Electrochim. Acta 32.1 (1987) 1-11.
[53] D. Ma, S. Li, C. Liang. "Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions." Corros Sci 51.4 (2009) 713-718.
[54] W. Han, F. Fang. "Fundamental aspects and recent developments in electropolishing." Int. J. Mach. Tools Manuf. 139 (2019) 1-23.
[55] C. L. Haynes, R. P. Van Duyne. "Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics." J. Phys. Chem. B 105.24 (2001) 5599-5611.
[56] J. C. Hulteen, R. P. Van Duyne. "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces." J. Vac. Sci. Technol. A 13.3 (1995) 1553-1558.
[57] I. Mínguez-Bacho, F. Scheler, P. Büttner, K. Bley, N. Vogel, J. Bachmann. "Ordered nanopore arrays with large interpore distances via one-step anodization." Nanoscale 10.18 (2018) 8385-8390.
[58] G. M. Whitesides, B. Grzybowski. "Self-assembly at all scales." Science 295.5564 (2002) 2418-2421.
[59] O. D. Velev, N. D. Denkov, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama. "Mechanism of formation of two-dimensional crystals from later particles on substrata." Trends in Colloid and Interface Science VII (1993) 366-367.
[60] Y. Xia, B. Gates, Y. Yin, Y. J. A. M. Lu. "Monodispersed colloidal spheres: old materials with new applications." Adv. Mater. 12.10 (2000) 693-713.
[61] S. M. Yang, N. Coombs, G. A. Ozin. "Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals." Adv. Mater. 12.24 (2000) 1940-1944.
[62] H. J. Nam, D. Y. Jung, G. R. Yi, H. Choi. "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres." Langmuir 22.17 (2006) 7358-7363.
[63] F. Fleischhaker, A. C. Arsenault, Z. H. U. O. Wang, V. Kitaev, F. C. Peiris, G. von Freymann, G. A. Ozin. "Redox‐Tunable Defects in Colloidal Photonic Crystals." Adv. Mater. 17.20 (2005) 2455-2458.
[64] D. H. Gu, J. Lee, H. W. Ban, G. Lee, M. Song, W.Choi, J. S. Son. "Colloidal Suprastructures Self-Organized from Oppositely Charged All-Inorganic Nanoparticles." Chem. Mater. 32.19 (2020) 8662-8671.
[65] A. S. Dimitrov, K. Nagayama. "Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces." Langmuir 12.5 (1996) 1303-1311.
[66] H. Wu, G. Niu, W. Ren, L. Jiang, O. Liang, J. Zhao, Y. H. Xie. "Crucial Impact of Hydrophilicity on the Self-Assembled 2D Colloidal Crystals Using Langmuir–Blodgett Method." Langmuir 36.34 (2020) 10061-10068.
[67] J. C. Hulteen, R. P. Van Duyne. "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces." J. Vac. Sci. Technol. A 13.3 (1995) 1553-1558.
[68] R. Micheletto, H. Fukuda, M. Ohtsu. "A simple method for the production of a two-dimensional, ordered array of small latex particles." Langmuir 11.9 (1995) 3333-3336.
[69] H. Li, J. Low, K. S. Brown, N. Wu. "Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template." IEEE Sens. J. 8.6 (2008) 880-884.
[70] J. Rybczynski, U. Ebels, M. Giersig. "Large-scale, 2D arrays of magnetic nanoparticles." Colloids Surf. A Physicochem. Eng. Asp. 219.1-3 (2003) 1-6.
[71] J. Aizenberg, P. V. Braun, P. Wiltzius. "Patterned colloidal deposition controlled by electrostatic and capillary forces." Phys. Rev. Lett. 84.13 (2000) 2997.
[72] H. W. Deckman, J. H. Dunsmuir. "Natural lithography." Appl. Phys. Lett. 41.4 (1982) 377-379.
[73] X. Chen, X. Wei, K. Jiang. "The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography." Nanotechnology 20.42 (2009) 425605.
[74] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. Van Duyne. "Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays." J. Phys. Chem. B 103.19 (1999) 3854-3863.
[75] L. Wen, R. Xu, Y. Mi, Y. Lei. "Multiple nanostructures based on anodized aluminium oxide templates." Nat. Nanotechnol. 12.3 (2017) 244-250.
[76] L. D. Rafailović, C. Gammer, J. Srajer, T. Trišović, J.Rahel, H. P. Karnthaler. "Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide." RSC Adv. 6.40 (2016) 33348-33352.
[77] A. Al-Haddad, Z. Zhan, C. Wang, S. Tarish, R. Vellacheria, Y. Lei. "Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning." ACS nano 9.8 (2015) 8584-8591.
[78] A. L. Lipson, D. J. Comstock, M. C. Hersam. "Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization." Small 5.24 (2009) 2807-2811.
[79] N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub. "Wettability switching techniques on superhydrophobic surfaces." Nanoscale Res. Lett. 2.12 (2007) 577-596.
[80] R. N. Wenzel. "Resistance of solid surfaces to wetting by water." Ind. Eng. Chem. Res. 28.8 (1936) 988-994.
[81] A. B. D. Cassie, S. Baxter. "Wettability of porous surfaces." Trans. Faraday Soc. 40 (1944) 546-551.
[82] M. Callies, D. Quere. "On water repellency." Soft matter 1.1 (2005) 55-61.
[83] K. Ma, T. S. Chung, R. J. Good. "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide." J Polym Sci B Polym Phys 36.13 (1998) 2327-2337.
[84] G. Nagayama, D. Zhang. "Intermediate wetting state at nano microstructured surfaces." Soft Matter 16.14 (2020) 3514-3521.
[85] Y.C.Lin. "The Kiss of the Rose: Inspired by biology, a surface with super-hydrophobicity and high water droplet adsorption capacity and applied to the future non-residue transfer technology." Thesis of the Institute of Nanotechnology, Jiaotong University (2010) 1 -63.
[86] Q. Z. Zhong, M. H. Yi, Y. Du, A. He, Z. K. Xu, L. S. Wan. "Multiple liquid manipulations on patterned surfaces with tunable adhesive property." Adv. Mater. Interfaces. 4(20) (2017) 1700490.
[87] Y. Wang, H. Yang, H. Liu, L. Zhang, R. Duan, X. Liu, J. Chen. "Controllable domain morphology in coated poly (lactic acid) films for high-efficiency and high-precision transportation of water droplet arrays." RSC Adv. 7(84) (2017) 53525-53531.
[88] D. Wu, S. Z. Wu, Q. D. Chen, Y. L. Zhang, J. Yao, X. Yao, Sun, H. B. "Curvature‐driven reversible in situ switching between pinned and roll‐down superhydrophobic states for water droplet transportation." Adv. Mater. 23(4) (2011) 545-549.
[89] W. Cheng, M. Steinhart, U. Gösele, R. B. Wehrspohn. "Tree-like alumina nanopores generated in a non-steady-state anodization." J. Mater. Chem. 17.33 (2007) 3493-3495.
[90] X. Li, G. Meng, Q. Xu, M. Kong, X. Zhu, Z. Chu, A. P. Li. "Controlled synthesis of germanium nanowires and nanotubes with variable morphologies and sizes." Nano Lett. 11.4 (2011) 1704-1709.
[91] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek. "Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes." J. Membr. Sci. 319.1-2 (2008) 192-198.
[92] C. T. Liu, Y. L. Lin, C. W. Chu, C. W. Chang, Y. J. Chiu, T. Y. Chiu, J. T. Chen. "Asymmetries in porous membranes: fabrication of anodic aluminum oxide membranes with double-sized nanopores and controlled surface properties." J. Phys. Chem. C 123.23 (2019) 14540-14546.
[93] J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, X. Gao. "Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores." ACS Appl. Mater. Interfaces 4.10 (2012) 5678-5683.
[94] S. Hyun, O. Kwon, B. Y. Lee, D. Seol, B. Park, J. Y. Lee, J. K. Kim. "Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices." Nanoscale 8.3 (2016) 1691-1697.
[95] S. Kim, S. Hyun, J. Lee, K. S. Lee, W. Lee, J. K. Kim. "Nanoimprinting: Anodized Aluminum Oxide/Polydimethylsiloxane Hybrid Mold for Roll‐to‐Roll Nanoimprinting (Adv. Funct. Mater. 23/2018)." Adv. Funct. Mater. 28.23 (2018) 1870156.
[96] Y. Cho, G. Kim, Y. Cho, S. Y. Lee, H. Minsky, K. T. Turner, S. Yang. "Orthogonal control of stability and tunable dry adhesion by tailoring the shape of tapered nanopillar arrays." Adv. Mater. 27.47 (2015) 7788-7793.
[97] S. Boonniyom, T. Osotchan, K. Subannajui. "Hot embossing of anodic aluminium oxide on high‐density polyethylene: a deeper understanding based on hard surface coating." Micro Nano Lett. 13.3 (2018) 357-362.
[98] H. Xie, W. H. Xu, S. H. Jia, T. Wu. "Tunable fabrication of biomimetic polypropylene nanopillars with robust superhydrophobicity and antireflectivity." Nanotechnology 32.39 (2021) 395301.
[99] D. Patil, A. Sharma, S. Aravindan, P. V. Rao. "Development of hot embossing setup and fabrication of ordered nanostructures on large area of polymer surface for antibiofouling application." Micro Nano Lett. 14.2 (2019) 191-195.
[100] R. Qian, Y. Yu. "Transition of polymers from rubbery elastic state to fluid state." Front. Chem. in China 4.1 (2009) 1-9.
[101] L. B. Huang, Y. Zhou, S. T. Han, Y. Yan, L. Zhou, V. A. L. Roy. "The role of a nanoparticle monolayer on the flow of polymer melts in nanochannels." Nanoscale 6.19 (2014) 11013-11018. |