博碩士論文 108226014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.119.255.31
姓名 鄭凱仁(Kai-Jen Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 穩定高效之漸變鈣鈦礦合金薄膜太陽能電池
(High-stability and efficiency graded perovskite alloy thin-film based solar cells)
相關論文
★ Ag/BCP:ZnO NPs膜層的探討應用於雙面反式鈣鈦礦薄膜太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 本論文主要在研究沉積於P3CT-Na/ITO/glass/基板上的鈣鈦礦合金薄膜吸光層MAxCs1-xPb(Ix Br1-x)3,利用原子力顯微鏡(AFM)、吸收度光譜、X光繞射儀(XRD)圖譜、光激發螢光光譜以及拉曼散射光譜分析鈣鈦礦合金薄膜的表面形貌、結晶性及光激發態特徵。以疏水性的P3CT-Na當作電洞傳輸層,並以MA0.83Cs0.17Pb(I0.83Br0.17)3鈣鈦礦合金薄膜當作吸光層製作而成的太陽能電池具有穩定且高效的光伏特性表現,太陽能電池的高填充因子(FF)使其最高功率轉換效率(PCE)可達15.93 %,並藉由低掠角XRD圖譜、光激發螢光光譜及拉曼散射光譜證實MA0.83Cs0.17Pb(I0.83Br0.17)3鈣鈦礦合金薄膜結構為材料組成分布漸變的薄膜。除此之外,從時間相關之最大功率密度量測以及元件的光伏表現長期量測追蹤下得知,缺陷密度較低的MA0.83Cs0.17Pb(I0.83Br0.17)3鈣鈦礦太陽能電池不僅在短時間量測下具有穩定的最大輸出功率密度,且在160天長期的量測追蹤下,未封裝的元件受環境溫度(22°C)及濕度(30%-40%)影響下,PCE仍保有10.48 %。
摘要(英) In this thesis, the MAxCs1-xPb(IxBr1-x)3 perovskite alloy thin films deposited on top of the P3CT-Na/ITO/glass substrates have been studied. The surface morphologies, crystallinities and excitonic characteristics of MAxCs1-xPb(IxBr1-x)3 thin films were measured by using the atomic-force microscopy (AFM), absorbance spectrophotometry, X-ray diffractometer (XRD), photoluminescence (PL) spectrophotometry and Raman scattering spectrophotometry. The best photovoltaic performance of the P3CT-Na based MAxCs1-xPb(IxBr1-x)3 solar cells can be achieved when the x value is 0.83. The 79.3% high fill factor (FF) can be referred to the highest power conversion efficiency (PCE) of 15.93%. It is confirmed that the MA0.83Cs0.17Pb(I0.83Br0.17)3 alloy thin film is a graded perovskite alloy thin film by using grazing-incident XRD patterns, PL spectra and Raman spectra.
Besides, the experimental results show that MA0.83Cs0.17Pb(I0.83Br0.17)3 solar cell with a lower defect density has the more stable and the highest maximum-power density. And, the PCE of the optimal MA0.83Cs0.17Pb(I0.83Br0.17)3 solar cells only decreases to 10.48 % without additional encapsulations after 160 days. It is noted that the solar cells were stored in a dry box under a moderate environment (22°C, 30%-40% relative humidity).
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 漸變膜
★ 合金
關鍵字(英) ★ perovskite solar cells
★ graded thin film
★ alloy
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 V
第一章 緒論 1
1. 1 前言 1
1. 2 太陽能電池發展 3
1. 3 太陽能電池的種類 4
1. 3. 1 矽太陽能電池 5
1. 3. 2 化合物無機半導體薄膜太陽能電池 5
1. 3. 3 有機材料電池 7
1. 4 研究動機 10
第二章 鈣鈦礦薄膜太陽能電池發展與文獻回顧 13
2. 1 有機-無機鈣鈦礦晶體材料結構 13
2. 2 鈣鈦礦太陽能電池結構 13
2. 2. 1 正式結構 vs.反式結構 14
2. 3 反式鈣鈦礦太陽能電池的工作機制 15
2. 4 鈣鈦礦太陽能電池的起源發展 16
2. 4. 1 鈣鈦礦敏化電池 16
2. 4. 2 反式鈣鈦礦太陽能電池 17
2. 4. 3 合金型鈣鈦礦太陽能電池 18
第三章 實驗方法 22
3. 1 實驗藥品與溶液製備 22
3. 1. 1 實驗藥品 22
3. 1. 2 溶液製備 23
3. 2 實驗設備 26
3. 2. 1 手套箱(Glove Box) 26
3. 2. 2 旋轉塗佈機(Spin Coater) 26
3. 2. 3 熱蒸發鍍膜系統(Thermal Evaporation Deposition) 27
3. 3 量測儀器 28
3. 3. 1 太陽光模擬器 (DRIEL LSS-7120 Solar Cimulator) 28
3. 3. 2 分光光譜儀 (UV-Visible-NIR Spectrophotometer) 29
3. 3. 3 光激發光譜儀 (Photoluminescence Spectroscopy, PL) 30
3. 3. 4 拉曼散射光譜儀 (Raman Spectra) 31
3. 3. 5 X射線繞射儀 (X-ray diffraction) 32
3. 3. 6 原子力顯微鏡 (Atomic Force Microscopy, AFM) 34
3. 3. 7 掃描式電子顯微鏡 35
3. 4 實驗流程 36
3. 4. 1 清洗ITO pattern玻璃基板 37
3. 4. 2 UV-Ozone treatment 37
3. 4. 3 Spin-coating P3CT-Na HTL 38
3. 4. 4 Spin-coating 鈣鈦礦吸收層 39
3. 4. 5 Spin-coating PCBM ETL 40
3. 4. 6 Spin-coating BCP 修飾層 40
3. 4. 7 刮出對電極 41
3. 4. 8 熱蒸鍍銀電極 41
第四章 鈣鈦礦薄膜的製程參數優化 42
4. 1 反溶劑容量對鈣鈦礦太陽能電池的影響 43
4. 1. 1 不同反溶劑使用容量於MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之AFM分析 43
4. 1. 2 改變反溶劑使用容量於鈣鈦礦太陽能電池元件之J-V curve 特性表現分析 45
4. 2 鈣鈦礦薄膜製程之旋塗轉速對太陽能電池元件的影響 46
4. 2. 1 不同旋塗轉速於MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之AFM分析 46
4. 2. 2 鈣鈦礦薄膜之旋塗轉速對太陽能電池元件影響之J-V curve 特性表現分析 48
4. 2. 3 不同旋塗轉速於MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之SEM分析 50
4. 3 鈣鈦礦薄膜之後處理加熱溫度對太陽能電池元件之影響 51
4. 3. 1 不同退火溫度的MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之AFM分析 51
4. 3. 2 鈣鈦礦薄膜之退火溫度對太陽能電池元件影響之J-V curve 特性表現分析 53
4. 4 章節小結 54
第五章 鈣鈦礦太陽能電池穩定性優化 55
5. 1 不同X值之MAXCS1-XPB(IXBR1-X)3鈣鈦礦太陽能電池的J-V CURVE 特性表現分析 56
5. 2 不同X值之MAXCS1-XPB(IXBR1-X)3薄膜的AFM分析 57
5. 3 不同X值之MAXCS1-XPB(IXBR1-X)3薄膜的XRD分析 58
5. 4 不同X值之MAXCS1-XPB(IXBR1-X)3薄膜的穿透光譜分析 66
5. 5 不同X值之MAXCS1-XPB(IXBR1-X)3薄膜的PL光譜分析 68
5. 6 不同X值之MAXCS1-XPB(IXBR1-X)3薄膜的RAMAN分析 71
5. 7 章節小結 72
第六章 鈣鈦礦太陽能電池穩定性量測分析 74
6. 1 鈣鈦礦太陽能電池之TIME-DEPENDENT MAXIMUM POWER DENSITY (MPD)曲線分析 74
6. 2 鈣鈦礦太陽能電池之長期穩定性分析 78
第七章 結論 84
參考文獻 85
參考文獻 [1]National Renewable Energy Laboratory (NREL), "Best Research-Cell Efficiencies Chart," 2020.
https://www.nrel.gov/pv/cell-efficiency.html
[2] A. Goetzberger, et al. "Photovoltaic materials, history, status and outlook." Materials Science and Engineering, vol 40, pp. 1-46, 2003.
[3]張正華等編著,有機與塑膠太陽能電池,初版,五南,台北市,2007年8月。
[4]Solar Energy, "太陽電池材料種類."
https://sites.google.com/site/solarenergy10399282/10-1
[5]Energy Trend, "太陽能電池的分類." https://www.energytrend.com.tw/knowledge/20120503-4232.html
[6]濱川圭弘,光電太陽能電池設計與應用,初版,五南,台北市,2009年8月。
[7]DIGITIMES, "III-V族太陽能電池先進技術之未來展望,"
https://www.digitimes.com.tw/iot/article.asp?cat=130&id=252790
[8] A. Mishra, et al. "Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure: Property Relationships to Design Rules." Angew. Chem, vol 48, pp. 2474 – 2499,2009.
[9]陳祉雲、李玉郎, "染料敏化太陽能電池." 科學發展, 564期, 2019年12月
[10] K. Akihiro, et al. "Organometal halide perovskites as visible-light
Sensitizers for photovoltaic cells." Journal of the American Chemical Society, vol 131, No 17, pp. 6050-6051, 2009
[11] J. H. Noh, et al. "Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells." Nano Lett, vol 13, pp. 1764-1769, 2013.
[12] Z. Wang, et al. "Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers." Adv. Mater, vol 29, 2016.
[13] S. H. Chang, et al. "Structural, optical and excitonic properties of MAxCs1-xPb(IxBr1-x)3 alloy thin films and their application in solar cells." Solar Energy Materials and Solar Cells, vol 210, 2020.
[14] X. Li, et al. "Polyelectrolyte Based Hole-transporting Materials for High
Performance Solution Processed Planar Perovskite Solar Cells." J. Mater. Chem. A, vol 3, pp. 15024-15029, 2015.
[15] A. KUMARM. "Advancement in Inorganic Hole Transport Materials for Inverted Perovskite Solar Cells." Journal of Electronic Materials, vol 49, 5840-5881, 2020.
[16] X. Lin, et al. " Efficiency progress of inverted perovskite solar cells." Energy Environ. Sci., vol 13, 3823-2847, 2020.

[17] N. J. Jeon, et al. "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells." Nature Materials, vol 13, pp. 897-903, 2014.
[18] L. Hu, et al. "Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells." ACS Photonics, vol 1, 547-553, 2014.
[19] J. H. Heo, et al. "Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency." Energy Environ. Sci., vol 8, pp. 1602-1608, 2015.
[20] Z. Yu, et al. "Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells." Nature energy, vol 5, 657-665, 2020.
[21] H. S. Kim, et al. "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%." Scientific Reports, vol 2, 591, 2012.
[22] J. Y. Jeng, et al. "CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells." Adv. Mater, vol 25, pp. 3727-3732, 2013.
[23] W. Chen, et al. "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers." Science, vol 350, pp. 944-948, 2015.
[24] Y. Zhou, et al. "Doping and alloying for improved perovskite solar cells." J. Mater. Chem. A, vol 4, pp. 17623–17635, 2016.
[25] L. K. Ono, et al. "Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions." ACS Applied Materials & Interfaces, vol 9, pp. 30197-30246, 2017.
[26] Y. Zhou, et al. "Exceptional Morphology-Preserving Evolution of Formamidinium
Lead Triiodide Perovskite Thin Films via Organic-Cation Displacement." J. Am. Chem. Soc, vol 138, pp. 5535-5538, 2016.
[27] N. Pellet, et al. "Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting." Angew. Chem. Int. Ed, vol 53, pp. 3151 –3157, 2014.
[28] J. W. Lee, et al. "Formamidinium and Cesium Hybridization for Photo- and
Moisture-Stable Perovskite Solar Cell." Adv. Energy Mater, vol 5, pp. 1501310, 2015.
[29] F. Hao, et al. "Lead-free solid-state organic–inorganic halide perovskite solar cells." Nature Photonics, vol 8, pp. 489–494, 2014.
[30] F. Hao, et al. "Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites
Enables Broadening of Absorption Spectrum in Solar Cells." J. Am. Chem. Soc, vol 136, pp. 8094–8099, 2014.
[31] E. T. Hoke, et al. "Reversible photo-induced trap formation in mixedhalide
hybrid perovskites for photovoltaics." Chem. Sci., vol 6, pp. 613-617, 2015.
[32] William Shockley, Hans J. Queisser. "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells." ." Journal of Applied Physics, vol 32, pp. 510, 1961.
[33]科學 Online, "有機太陽能電池(Organic Solar Cell), "
https://highscope.ch.ntu.edu.tw/wordpress/?p=8467
[34] D. M. Chapin, et al. "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power." Journal of Applied Physics, vol 25, pp. 676, 1954.
[35]曾品嘉,"反式雙鈣鈦礦MAxCs1-xPb(IxBr1-x)3薄膜太陽能電池之特性研究",國立中央大學,碩士,108年6月。
[36] K. F. Lin, et al. "Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment." Solar Energy Materials & Solar Cells, vol 141, pp. 309-314, 2015.
[37] B. Wang, et al. "A polyaspartic acid sodium interfacial layer enhances surface trap passivation in perovskite solar cells." Journal of Materials Chemistry A, 2019.
[38] C. Bi, et al. "Understanding the Formation and Evolution of Interdiffusion
Grown Organolead Halide Perovskite Thin Films by Thermal Annealing." Journal of Materials Chemistry A, 2014.
[39] G. E. Eperon, et al. "Morphological Control for High Performance, Solution-
Processed Planar Heterojunction Perovskite Solar Cells." Adv. Funct. Mater, 2013.
[40] A. Dualeh, et al. "Effect of Annealing Temperature on Film Morphology of
Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells." Adv. Funct. Mater, 2014.
[41]李克駿等編著,半導體製程概論,第四版,全華,臺北市,2020年11月
[42]勀傑科技, "什麼是SEM?淺談掃描式電子顯微鏡技術. " https://reurl.cc/R0dAzg
[43] D. Thakur, et al. "Structural, optical and excitonic properties of urea grading doped CH3NH3PbI3 thin films and their application in inverted-type perovskite solar cells." Journal of Alloys and Compounds, vol 858, 2021.
[44] L. Etgar, et al. "Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells." J. Am. Chem. Soc, vol 134, pp. 17396-17399, 2012.
[45] G. Niu, et al. "Controlled orientation of perovskite films through mixed cations
toward high performance perovskite solar cells." Nano Energy, vol 27, pp. 87-94, 2016.
[46] S. Kavadiya, et al. "Crystal reorientation in methylammonium lead iodide perovskite thin film with thermal annealing." J. Mater. Chem. A, vol 7, 2019.
[47] A. L. PATTERsON, et al. "The Scherrer Formula for I-Ray Particle Size Determination." American Physical Society, vol 56, 1939.
[48] K. Badreddine, et al. "Structural, Morphological, Optical, and Room Temperature Magnetic Characterization on Pure and Sm-Doped ZnO Nanoparticles." Journal of Nanomaterials, 2018.
[49] K. M. Lee, et al. "Thickness effects of ZnO thin film on the performance of tri-iodide perovskite absorber based photovoltaics." Solar Energy, vol 120, pp.117-122, 2015.
[50] C.Y. Li, et al. "Anti-solvent mixture-mediated reduction of photocurrent hysteresis in high-impurity perovskite precursor based MAPbI3 solar cells." Solar Energy, vol 214, pp.86-92, 2021.
[51] M. Ledinsky, et al. "Raman Spectroscopy of Organic−Inorganic Halide Perovskites." J. Phys. Chem. C, vol 122, pp. 21703–21717, 2018.
[52] M. Thirumoorthi, et al. "Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique." Journal of Asian Ceramic Societies, vol 4, pp. 124-132, 2016.
[53] S. -E. Chiang, et al. "Origins of the s-shape characteristic in J-V curve of inverted-type perovskite solar cells." Nonotechnology, vol 31, pp.115403, 2019.
[54] W. -J. Yin, et al. "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber." Appl. Phys. Lett, vol 104, pp. 63903, 2014.
[55] P. Vashishtha, et al. "Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes." Chem. Mater, vol 29, pp.5965-5973, 2017.
[56] H. Zhang, et al. "Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals." Nature communications, vol 10, 2019.
[57] T. Zhang, et al. "Understanding the Relationship between Ion Migration and the
Anomalous Hysteresis in High-Efficiency Perovskite Solar Cells: A Fresh Perspective from Halide Substitution." Nano Energy, vol 26, pp.620-630, 2016.
[58] I. Levine, et al. "Interface-Dependent Ion Migration/Accumulation Controls Hysteresis in MAPbI3 Solar Cells." J. Phys. Chem. C, vol 120, pp.16399-16411, 2016.
[59] Y. Yang, et al. "Annealing Induced Recrystallization in CH3NH3PbI3−xClx for High Performance Perovskite Solar Cells." Scientific Reports, vol 7, 2017.
[60] Bert Conings, et al. "Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite." Adv. Energy Mater, vol 5, pp. 1500477, 2015.
指導教授 陳昇暉 張勝雄(Sheng-Hui Chen Sheng-Hsiung Chang) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明