參考文獻 |
[1] Kneissl, M. & Rass, J. III-Nitride Ultraviolet Emitters–Technology and Applications. (Springer, 2016).
[2] Kowalski, W. Ultraviolet Germicidal Irradiation Handbook. (Springer, 2009).
[3] Crawford, M. H. et al. Final LDRD Report: Ultraviolet Water Purification Systems for Rural Environments and Mobile Applications. SAND2005-7245 (Sandia National Laboratories, 2005).
[4] Würtele, M.-A. et al. Application of GaN-based deep ultraviolet light emitting diodes–UV LEDs for water disinfection. Water Res. 45, 1481–1489 (2011).
[5] Y. Taniyasu, M. Kasu, and T. Makimoto. Aluminum Nitride Deep Ultraviolet Light-emitting Diodes. NTT Technical Review, No. 12, 54–58 (2006).
[6] M. G. Ganchenkova and R. M. Nieminen. Nitrogen Vacancies as Major Point Defects in Gallium Nitride. Phys. Rev. Lett. 96 196402 (2006).
[7] Choi R. Current status and future works of high-power deep UV LEDs. Proc. SPIE 10104 (2017).
[8] LG Innotek unveils the world’s first ‘100 mW’ UV-C LED. Korea company (2017).
[9] Nagai S, Yamada K, Hirano A, Ippommatsu M, Ito M, Morishima N, Aosaki K, Honda Y, Amano H and Akasaki I. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study. J. Appl. Phys. 55 082101 (2016).
[10] Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I and Amano H. Internal quantum efficiency of whole-composition-range AlGaN multi quantum wells. Appl. Phys. Express 4 052101 (2011).
[11] Reentil¨a O, Brunner F, Knauer A, Mogilatenko A, Neumann W, Protzmann H, Heuken M, Kneissl M, Weyers M and Tr¨ankle G. Effect of the AlN nucleation layer growth on AlN material quality. Journal of Crystal Growth 310(23) 4932-4934 (2008).
[12] Kueller V et al. Modulated epitaxial lateral overgrowth of AlN for efficient UV LEDs. IEEE Photonics Technology Letters 24(18) 1603-1605 (2012).
[13]Stephan Figge, Roland Kröger, Tim Böttcher, Peter L. Ryder, and Detlef Hommel. Magnesium segregation and the formation of pyramidal defects in p-GaN. Appl. Phys. Lett. 81 4748 (2002).
[14] Xiao-Long Hu, Wen-Jie Liu, Guo-En Weng, Jiang-Yong Zhang, Xue-Qin Lv, Ming-Ming Liang, Ming Chen, Hui-Jun Huang, Lei-Ying Ying, and Bao-Ping Zhang. Fabrication and Characterization of High-Quality Factor GaN-Based Resonant-Cavity Blue Light-Emitting Diodes. IEEE PHOTONICS TECHNOLOGY LETTERS. 24(17) (2012).
[15] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn. An optically pumped GaN–AlGaN vertical cavity surface emitting laser. Appl. Phys. Lett. 69 1-3 (1996).
[16] Z. Zhang, M. Kushimoto, T. Sakai, N. Sugiyama, L. J. Schowalter, C. Sasaoka, and H. Amano. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl. Phys. Express 12 124003 (2019).
[17] X. H. Li, T. T. Kao, M. M. Satter, Y. O. Wei, S. Wang, H. E. Xie, S. C. Shen, P. D. Yoder, A. M. Fischer, F. A. Ponce, T. Detchprohm, and R. D. Dupuis. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate. Appl. Phys. Lett. 106, 041115 (2015).
[18] T. Takano, Y. Narita, A. Horiuchi, and H. Kawanishi. Room temperature deep-ultraviolet lasing at 241.5 nm of AlGaN multiple quantum-well laser. Appl. Phys. Lett. 84 3567–3569 (2004).
[19] Kalapala A R K, Liu D, Cho S J, Park J P, Zhao D Y et al. Optically pumped room temperature low threshold deep UV lasers grown on native AlN substrates. Opto-Electron Adv. 3 190025 (2020).
[20] D. Li, K. Jiang, X. Sun, and C. Guo. AlGaN photonics: Recent advances in materials and ultraviolet devices. Advances in Optics and Photonics 10(1) 43–110 (2018).
[21] D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann. Optical constants of epitaxial AlGaN films and their temperature dependence. Journal of Applied Physics 82(10) 5090—5096 (1997).
[22] Zhongming Zheng, Yang Mei, Hao Long, Jason Hoo, Shiping Guo, Qingxuan Li, Leiying Ying, Zhiwei Zheng, Baoping Zhang. AlGaN-Based Deep Ultraviolet Vertical-Cavity Surface-Emitting Laser. IEEE Electron Device Letters 3 375 – 378 (2021).
[23] U. T. Schwarz, E. Sturm, and W. Wegscheider. Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers. Applied Physics Letters 83 4095 (2003).
[24] G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga. Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method. Appl. Phys. Lett. 70 3209 (1997).
[25] Hightech, 雷射二極體, 知識力期刊 (2020).
[26] E. F. Schubert. Y.-H. Wang, A. Y. Cho, L.-W. Tu, and G. J. Zydzik. Resonant cavity light-emitting diode. Appl. Phys. Lett. 60 921 (1992).
[27] R. H. Saul, T. P. Lee, and C. A. Burrus. Semiconductors and Semimetals 22 Part C 193 (Academic, New York, 1985)
[28] F. De Martini, G. Innocenty, G. R. Jacobovitz, and P. Mataloni. Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity. Phys. Rev. Lett. 59 2955 (1987)
[29] H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen. Enhanced spontaneous emission from GaAs quantum wells in monolithic micro-cavities. Appl. Phys. Lett. 57 2814 (1990).
[30] M. Suzuki, H. Yokoyama, S. D. Brorson, and E. P. Ippen. Spontaneous emission and laser oscillation properties of micro-cavities containing a dye solution. Appl. Phys. Lett. 58 2598 (1991).
[31] T. J. Rogers, D. G. Deppe, and B. G. Streetman. Effect of an AlAs/GaAs mirror on the spontaneous emission of an InGaAs‐GaAs quantum well. Appl. Phys. Lett. 57 1858 (1990).
[32] H. E. Li and K. Iga. Vertical-Cavity Surface –Emitting Laser Devices. (Springer, Berlin) (2003).
[33] C. W. Wilmsen, H. Temkin, L. A. Coldren. Vertical-Cavity Surface-Emitting Lasers. Cambridge University Press (1999).
[34] D. I. Babic and S. W. Corzine. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics. 28(2) 514-524 (1992).
[35] H. Benisty, H. D. Neve, and C. Weisbuch. Impact of planar micro-cavity effects on light extraction-Part I: basic concepts and analytical trends. IEEE Journal of Quantum Electronics. 34(9) 1612-1631 (1998).
[36] H. Benisty, H. D. Neve, and C. Weisbuch. Impact of planar micro-cavity effects on light extraction-Part II: selected exact simulations and role of photon recycling. IEEE Journal of Quantum Electronics. 34(9) 1632-1643 (1998).
[37] D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, and H. Benisty. High-efficiency semiconductor resonant-cavity light-emitting diodes: A review. IEEE Journal of Selected Topics in Quantum Electronics. 8(2) 189 – 206 (2002).
[38] Koichi Shimoda. Introduction to Laser Physics. (Springer, 2013).
[39] Masahiro Akiba, Hideki Hirayama, Yuji Tomita, Yusuke Tsukada1, Noritoshi Maeda1, and Norihiko Kamata. Growth of flat p-GaN contact layer by pulse flow method for high light-extraction AlGaN deep-UV LEDs with Al-based electrode. physica status solidi (c). 9(3-4) 806-809 (2012).
[40] 高煒盛,Kao Wei-Cheng, p 型BN的電極製程與分析Fabrication and characterization of metal contact on p-type Boron Nitride 國立中央大學光電工程學系碩士班 碩士論文 (2020).
[41] 林洋森,覆晶式發光二極體 P 型氮化鎵高反射 鉑/銀/鉑/金歐姆電極之研究 國立交通大學 光電半導體與奈米科技產業研發碩士班 碩士論文 (2008).
[42] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai. Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films. Journal of Applied Physics. 86 4491 (1999).
[43] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, and M. Murakami. Effects of NiO on electrical properties of Ni/Au-based ohmic contacts for p-type GaN. Appl. Phys. Lett. 75 4145 (1999).
[44] D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, and T. E. Haynes. A study of the Au/Ni ohmic contact on p-GaN. Journal of Applied Physics. 88(7) 4196-4200 (2000).
[45] L. C. Chen, F. R. Chen, J. J Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chenand K. K. Shih. Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN. Journal of Applied Physics. 86 3826 (1999).
[46] Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A Vertikov, A.V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames. A vertical cavity light emitting InGaN quantum well heterostructure. Applied Physics Letters 74 3441 (1999).
[47] Y.-K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, R. P. Schneider Jr., and T. Takeuchi. Resonant-cavity InGaN quantum-well blue light-emitting diodes. Applied Physics Letters 77 1744 (2000).
[48] You Wu,ab Xiaojuan Sun, Zhiming Shi, Yuping Jia, Ke Jiang, Jianwei Ben, Cuihong Kai, Yong Wang, Wei Lu and Dabing Li. In situ fabrication of Al surface plasmon nanoparticles by metal–organic chemical vapor deposition for enhanced performance of AlGaN deep ultraviolet detectors. Nanoscale Adv. 2 1854-1858 (2020).
[49]維基百科
[50] P. Modak, M. D’Hondt, I. Moerman, P. Van Daele, P. Mijlemans, and P.Demeester. 5.2% Efficiency InAlGaP micro-cavity LEDs at 640 nm on Ge substrates. Electronics Letters. 37(6) 377 – 378 (2001).
[51] Ralph Wirth, Christian Karnutsch, Siegmar Kugler, Simone Thaler, and Klaus P. Streubel. Red and orange resonant-cavity LEDs. Proc. SPIE 4278 (2001).
[52] S. Orsila, T. Leinonen, P. Uusimaa, M. Saarinen, M. Guina, P. Sipila, V.Vilokkinen, P. Melanen, M. Dumitrescu, and M. Pessa. Resonant cavitylight-emitting diodes grown by solid source MBE. Journal of Crystal Growth. 227-228 346–351 (2001).
[53] J. W. Gray, Y. S. Jalili, P. N. Stavrinou, M. Whitehead, G. Parry, A.Joel, R. Robjohn, R. Petrie, S. Hunjan, P. Gong, and G. Duggan. High efficiency, low voltage resonant-cavity light-emitting diodes operating around 650 nm. Electronics Letters. 36(20) 1730–1731 (2000).
[54] Miao, P., Wu, L. and Peng, L. RCLED Nonlinearity Mitigation for Polymer Optical Fiber Communications. IEEE Xplore. 14862356 (2014).
[55] Mesleh, R., Elgala, H. and Haas, H. LED Nonlinearity Mitigation Techniques in Optical Wireless OFDM Communication Systems. Journal of Optical Communications and Networking. 4(11) 865-875 (2012).
[56] Dimitrov, S., Sinanovic, S. and Haas, H. Clipping Noise in OFDM-Based Optical Wireless Communication Systems. IEEE Transactions on Communications. 60(4) 1072-1081 (2012).
[57] Mohamed Sufyan Islim, Ricardo X. Ferreira, Xiangyu He, Enyuan Xie, Stefan Videv, Shaun Viola, Scott Watson, Nikolaos Bamiedakis, Richard V. Penty, Ian H. White, Anthony E. Kelly, Erdan Gu, Harald Haas, and Martin D. Dawson. Towards 10 Gb/s Orthogonal Frequency Division Multiplexing-Based Visible Light Communication using a GaN Violet Micro-LED. Photonics Research. 5(2) A35-A43 (2017). |