博碩士論文 108226015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:18.220.188.4
姓名 詹凱畯(Chan, Kai-Chun)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽波導平移式光子晶體偏振旋轉共振腔研究
(Resonator Formed by Shifted Photonic Crystal Polarization Rotation Convertor on SOI Waveguide)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽波導製作於絕緣體上矽晶片已大量應用於積體化光子電路,各式元件如光子晶體共振腔已被實現。在光學量子計算中,量子位元是以光的偏振方向來定義,需使用偏振旋轉器控制量子位元的狀況,或形成邏輯閘。
本研究提出一個新型光子晶體結構,製作於絕緣體上矽波導,可形成偏振旋轉器,並由於其光子能隙的作用,具有反射的效果。我們在此結構中設計一個共振腔,可達到具有偏振旋轉,又有濾波功能的積體化光波導元件。
本研究將透過有限時域差分法、有限元素法、特徵模態展開法,這三種方法來分析各個結構。一開始從仿一維光子晶體結構下手,發現單純的仿光子晶體結構無法形成偏振旋轉的效果,進而往已知L型波導結構搭配光子晶體結構的這個方向著手。
經研究發現,在圓洞結構中在特定波長下,設計出的結構會有低反射且穿透面的偏振有旋轉的現象,因此具穿透式偏振旋轉器的潛力。若設計為蝕刻圓洞波導具空腔結構時,在輸入光為特定波長時,可成為一反射式可控輸出偏振比例的濾波器。
我們也提出方洞之光子晶體結構,相較於圓洞的結果,不管是在偏振旋轉、濾波器上品質因子表現,皆是蝕刻方洞的結構較好。在蝕刻方洞結構上,我們估計使用70個週期洞結構,可以推測出元件達到反射率接近100%。這樣的高反射率的反射鏡可用在在品質因子的共振腔中。
本研究發現,當增加蝕刻洞數時,不但可以增加品質因子,也可以調整輸出的偏振比例;當改變空腔長度時,即可調整輸出的尖峰波長位置;當調整占空比、洞的寬度與深度、 兩洞中心距離,便可做到控制輸出偏振比例的情況,這些情況在濾波器與雷射共振腔同時適用。可讓我們設計出在特定波長,特定偏振輸出與特定Q值的濾波器與雷射。
摘要(英) Silicon waveguides are fabricated on insulators of silicon wafers that have been widely used in integrated photonic circuits. Various components such as photonic crystal resonators have been realized. In optical quantum computing, qubits are defined by the polarization state of light. Therefore, the polarization rotators are necessary to be used to control the state of qubits or to form logic gates.
In this study, we propose a novel photonic-crystal structure on SOI waveguides. The photonic crystal structure is shifted to the center of the waveguide to form a reflective polarization convertor. A resonant cavity is designed in the polarization convertor. The transmission and the reflection and the cavity modes are investigated. Three methods, Finite-Difference Time-Domain, Finite-Element Method, Eigenmode expansion method are adopted.
The rotation of polarization is demonstrated in the photonic crystal structure with shifted circular air holes. The rotation of the polarization depends on the diameter, the shift, the number of the air holes. With a cavity in the structure, the cavity modes can be observed in the transmission and the reflection spectra. The polarization state of the transmission and reflection of the devices can be designed by varying the diameter, the shift, the number of the air holes.
The photonic crystal structure with shifted rectangular holes is also investigated. The reflectivity close to 100% could be achieved for the photonic crystal structure with 100 shifted rectangular holes. A cavity is positioned in the structure to study the transmission and the reflection spectra as well as the cavity modes. The results show that the photonic crystal structure with shifted rectangular air holes can be used to form the transmissive and the reflective filters with a rotation of polarization. The wavelength of the cavity mode and the transmissive and reflective filter can be tuned by modifying the cavity length. By varying the number of etched rectangular air holes , the duty cycle, the width and the depth of the etched rectangular air holes, the polarization of the output light can be adjusted to a specific state.
In this study, the waveguide is designed in silicon. The photonic crystal structure with shifted air holes can also be designed in other active materials to design a laser with specific polarization state.
關鍵字(中) ★ 光子晶體
★ 共振腔
★ 偏振旋轉器
★ 光學偏振
★ 絕緣體上矽
★ 積體光學
關鍵字(英)
論文目次 中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 序論 1
1.1 研究動機 1
1.2 相關研究發展 2
1.3 研究方法 7
1.4 結論 8
第二章 基礎理論與模擬方法介紹 9
2.1 有限時域差分法 9
2.2 有限元素法 10
2.3 特徵模態展開法 10

2.4 法不立-陪若干設儀 11
2.5 光子晶體 12
2.6 結論 16
第三章 結構設計與模擬分析 17
3.1 光柵型波導 17
3.2 L型偏振旋轉器[12] 19
3.3 矽波導寬度上選擇 21
3.4 蝕刻圓洞的波導 23
3.5 蝕刻方洞的波導 32
3.6 結論 57
第四章 總結與未來展望 59
4.1 總結 59
4.2 未來展望 61
參考文獻 62
參考文獻 [1] IEEE J. Sel. Top. Quantum Electron., 12 (2006), pp. 1678.
[2] W. Y. Chiu, T. W. Huang, Y. H. Wu, Y. J. Chan, C. H. Hou, H. T. Chien, C. C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Optics Express vol. 15, p. 15500, 2007.
[3] T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, “Polarization-transparent microphotonic devices in the strong confinement limit. ” Nature Photonics, 1(1),pp.57– 60, 2007.
[4]A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides.”, Phys. Rev. Lett. vol.7 7, pp. 3787, 1996.
[5] C. C. Chen, Y. L. Tsai, C. L. Hsu, J. Y. Chang, “Propagation Loss Reduction of Photonic Crystal Slab Waveguides by Microspheres.”, Opt. Express, vol. 12, pp. 3934, 2004 .
[6] S. C. Kilic and S. Kocaman, "Highly Sensitive and Tunable Fano-Like Rod-Type Silicon Photonic Crystal Refractive Index Sensor.", IEEE Sensors Journal, vol. 21, no. 6, pp. 7551-7557, 15 March15, 2021.
[7] M. S. Hossain, S. M. A. Razzak, C. Markos, N. H. Hai, M. S. Habib and M. S. Habib, “Highly Birefringent, Low-Loss, and Near-Zero Flat Dispersion ENZ Based THz Photonic Crystal Fibers," IEEE Photonics Journal, vol. 12, no. 3, pp. 1-9, June2020.
[8] C.C. Chen, “Directional emission from photonic crystal waveguides.”, Opt Express, vol.14, pp.2423-2428, 2006.
[9] Y. Cui, V. A. Tamma, J. -. Lee and W. Park, “Mechanically Tunable Negative-Index Photonic Crystal Lens.”, IEEE Photonics Journal, vol. 2, no. 6, pp. 1003-1012, Dec. 2010.
[10] Y.C. Cheng, “Photonic Crystal Cavity With Double Heterostructure in GaN Bulk. ”, IEEE Photonics J., vol.5, 2013.
[11] H. Park, S. Kim, S. Kwon, Y. Ju, J. Yang, J. Baek., “Electrically Driven Single-Cell Photonic Crystal Laser. ”, Science, vol.305, no. 5689, pp. 1444-1447, Sep. 2004.
[12] G. Shen, H. Tian, Y. Ji, “Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides”, Appl. Opt., vol. 52, no. 6, pp. 1218-1225, Feb. 2013.
[13] Z. Wang, “Ultrasmall Si-nanowire-based polarization rotator” J. Opt. Soc. Am. B,Vol.25, No.5,May 2008.
[14] Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, “Polarization rotation in asymmetric periodic loaded waveguides.”, Appl. Phys., vol. 59, pp. 1278–1280, 1991
[15] J. J. G. M. Van der Tol, J. W. Pederson, E. G. Metaal, F. Hakimzadeh, Y. S. Oei, F. H. Groen, and I. Moerman, “Realization of a short integrated optic passive polarization converter,” IEEE Photon. Technol. Lett., vol. 7, pp. 893–895, 1995
[16] S. S. A. Obayya, B. M. A. Rahman and H. A. El-Mikati, "Vector beam propagation analysis of polarization conversion in periodically loaded waveguides," in IEEE Photonics Technology Letters, vol. 12, no. 10, pp. 1346-1348, Oct. 2000.
[17] Chris Brooks, Paul E. Jessop, Henghua Deng, David Yevick, and N. Garry Tarr "Passive silicon-on-insulator polarization-rotating waveguides.", Optical Engineering 45(4), 044603, 2006.
[18] G. Chen, L. Chen, W. Ding, F. Sun, and R. Feng, “Ultra-short silicon-on-insulator (SOI) polarization rotator between a slot and a strip waveguide based on a nonlinear raised cosine flat-tip taper,” Opt. Express 21, pp.14888–14894, 2013.
[19] M. F. O. Hameed, M. Abdelrazzak and S. S. A. Obayya, "Novel Design of Ultra-Compact Triangular Lattice Silica Photonic Crystal Polarization Converter.", Journal of Lightwave Technology, vol. 31, no. 1, pp. 81-86, Jan. 2013.
[20] H. Zhou et al., "Ultra-compact and broadband Si photonics polarization rotator by self-alignment process.", Opt. Exp., vol. 23, no. 5, pp. 6815-6821, Mar. 2015.
[21]C.C.Chen, “Design of ultra-short polarization convertor with enhanced birefringence by photonic crystals.”, Results in Physics, Volume 24, 2021,
[22] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media.”, IEEE Trans. Antennas Propagat., vol.14, No.3, pp.300-307, May 1966.
[23] Jean-Pierre Berenger, “A perfectly matched layer for the absorption of electromagnetic waves. ”, Journal of Computational Physics, Volume 114, Issue 2,Pages 185-200, 1994
[24] Sudbo, A. S., “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides.”, Pure Appl. Opt. 2, pp. 211-233, 1993.
[25] S.A. Schelkunoff, "Generalized telegraphist′s equations for waveguides," Bell Syst. Tech. J., vol. 31, no. 4, pp. 784-801, 1952,
[26]R. Hui, M. O. Sullivan, Fiber Optic Measurement Techniques, chapter 2, Elsevier Inc., USA, 2009
[27] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices.”, Phys. Rev. Lett. 58, pp.2486, 1987
[28] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics.”, Phys. Rev. Lett., Vol. 58, pp.2059, 1987
[29] Y. Fei, L. Zhang, Y. Cao, X. Lei, S. Chen, “A novel polarization rotator based on an asymmetric slot waveguide. ”, Optics Communications, Volume 324, pp 22-25 , 2014
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明