博碩士論文 108226044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.119.255.31
姓名 林倖如(Sing-Ru Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 用於紫外光曝光系統之石英透鏡陣列設計與驗證
(Design and verification of quartz-based microlens array for UV exposure system)
相關論文
★ 建立人體皮膚反射光譜光學模型之研究★ 高動態範圍影像式照度即時檢測系統
★ 五十米級固態光源用於舞台投射系統之研究★ 精準色彩取像與顯示系統之設計與製作
★ 符合多種道路路面需求之通用型路燈設計★ 非正交多區塊反射鏡車頭燈之設計
★ 歐規單一光學反光鏡之高亮度近遠燈研究★ 反射率光譜混色模型應用於印表機校色之研究
★ 陣列式燈具光學特性快速量測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 曝光機在半導體製程中扮演重要的一環,要將曝光機達到低不均勻度和高光學利用率,不只在光學設計上有難度,在石英光學元件上的製作也不簡單。首先,本論文針對不同石英陣列透鏡參數來分析其光學特性與影響,在考量其光學特性與製成的能力後,選定最符合需求的石英透鏡陣列參數,並以達到市面上曝光機的規格要求進行設計。
本論文所設計與驗證之石英透鏡陣列通過市售上曝光機的規格要求,最後完成的有效面積為220 × 220 mm2、最高照度24 mW/cm2、不均勻度3.2 %和曝光系統準直角為1.7˚,且光學利用率達50%。
摘要(英) Mask aligner is an important equipment in semiconductor industry. To implement Mask aligner in a mask aligner is a new trend, but is not easy, because high uniformity and high optical utilization efficiency are difficult to achieve. First, this paper analyzes the optical characteristics and effects of different quartz array lens parameters. After considering its optical characteristics and manufacturing capabilities, select the most suitable quartz lens array parameters to design for the specifications of Mask aligner on the market.
The quartz lens array designed and verified in this paper has passed the specifications of Mask aligner, Efficiency Area is 220 × 220 mm2、Maximum irradiance is 24 mW/cm2、Non-uniformity is 3.2 %、Collimation Half Angle is 1.7˚ And the optical utilization factor achieve 50%。
關鍵字(中) ★ 曝光機
★ 不均勻度
★ 光學利用率
★ 透鏡陣列
關鍵字(英) ★ Mask aligner
★ Non-uniformity
★ Optical utilization efficiency
★ fly-eye lens
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 VIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
第二章 原理介紹 7
2-1 幾何光學(Geometrical Optics) 7
2-1-1 菲涅耳損失 7
2-1-2 造鏡者公式 9
2-1-3 厚透鏡公式 12
2-1-4 非成像光學系統 14
2-2 輻射學與光度學 14
2-2-1 輻射通量Φ 16
2-2-2 照度E (Irradiance) 16
2-2-3 輻射強度I (Radiant Intensity) 18
2-2-4 輝度L (Radiance) 19
2-2-5 不均勻度 (Non-Uniformity) 檢測 21
2-3 透鏡陣列 23
第三章 光學模擬與設計 26
3-1 初階光學設計 26
3-2 理論與模擬驗證 28
3-3 光源元件設計 31
3-4 不同透鏡陣列類型設計與分析 36
3-5 透鏡陣列參數於曝光機之影響 40
3-6 製程圓角模擬分析 44
3-7 曝光系統整合模擬結果 47
第四章 實驗與模擬驗證 49
4-1 透鏡陣列實體分析 49
4-2 實驗架構 57
4-3 實驗結果 60
4-4 模擬驗證破損之影響 62
第五章 結論 66
參考文獻 68
中英名詞對照表 75
參考文獻 [1] R. Karlicek, C. C. Sun, G. Zissis, and R. Ma, Handbook of advanced lighting technology, (Springer, Switzerland, 2017).
[2] E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” Proc. of SPIE 7932, 793207 (2011).
[3] C. K. Huang, and J. G. Sung, “The application of UV-LEDs to printed circuit board process,” presented at Assembly and Circuits Technology Conference, Taipei, Taiwan, 21-23 October 2009.
[4] N. Pongprasert, Y. Sekozawa, S. Sugaya, and H. Gemma, “A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel,” Sci. Hortic. 130, 73-77 (2011)
[5] G. Q. Li, W. L. Wang, Z. Y. Huo, Y. Lu, and H. Y. Hu, “Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli,” Water. Res. 126, 134-143 (2017)
[6] A. Gross, F. Stangl, K. Hoenes, M. Sift, and M. Hessling, “Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide, ” Water 7, 4605-4621 (2015)
[7] K. Schindler, U. Leischner, C. Lopper, T. Striebel, P. Kaiser, and U. Schoembs, “High Intensity UV-LED Mask Aligner for Applications in Industrial Research,” MikroSystemTechnik 672-675 (2017).
[8] S. Nakamura, and S. F. Chichibu, Introduction to nitride semiconductor blue lasers and light emitting diodes, (CRC Press, USA, 2000).
[9] Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[10] Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[11] LED LEDinside-2016 年紫外線LED 市場產值將成長至1.66 億, http://www.ledinside.com.tw/research/20160919-33136.html.
[12] K. Jain, M. Zemel, and M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” IEEE. Inst. Electr. Electron. Eng. 90, 1681-1688 (2002).
[13] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of nanostructures using a UV-based imprint technique,” Microelectron. Eng. 53, 233-236 (2000).
[14] A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuator. A. Phys. 73, 14-23 (1999).
[15] C. Bowker, A. Sain, M. Shatalov, and J. Ducoste, “Microbial UV fluence-response assessment using a novel UV-LED collimated beam system,” Water. Res. 45 (2011).
[16] Y. L. Cheng, M. L. Li, J. H. Lin, J. H. Lai, C. T. Ke, and Y. C. Huang, “Development of dynamic mask photolithography system,” presented at International Conference on Mechatronics, Taipei, Taiwan, 10-12 July 2005.
[17] Y. Li, P. Wu, Z. Luo, Y. Ren, M. Liao, L. Feng, Y. Li, and L. He, “Rapid fabrication of microfluidic chips based on the simplest LED lithography,” J. Micromech Microeng 25, 055020 (2015).
[18] K. Takahashi, and J. Setoyama, “A UV‐exposure system using DMD,” Electron Commun. Jpn. (Part II: Electronics) 83, 56-58 (2000).
[19] F. R. Zahi, S. J. Rizwi, S. K. Haq, and R. H. Khan, “Lowdose mercury toxicity and humanhealth,” Environ. Toxicol. Pharmacol. 20, 351-360 (2005).
[20] L. D. Hylanderand, and M. E. Goodsite, “Environmental costs of mercury pollution,” Sci. Total Environ. 368, 352-370 (2006).
[21] R. Dabeka, A. D. Mckenzie, D. S. Forsyth, and H. B. Conacher, “Survey of total mercury in some edible fish and shellfish species collected in Canada in 2002,” Food. Addit. Contam. 21, 434–440 (2004).
[22] R. M. Guijt, and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab. on a Chip 8, 1402-1404 (2008).
[23] M. N. Hasan, D. H. Dinh, H. L. Chien, and Y. C. Lee, “Maskless beam pen lithography based on integrated microlens array and spatial-filter array,” Opt. Eng. 56, 115104 (2017).
[24] S. Huang, M. Li, L. Wang, Y. Su, and Y. Liang, “Precise fabrication of large-area microstructures by digital oblique scanning lithography strategy and stage self-calibration technique,” Appl. Phys. Express 12, 096501 (2019).
[25] G. R. Baxter, J. Tesone, and G. Rivard, “Double-sided circuit board exposure machine and method with optical registration and material variation compensation,” US Patent (1994).
[26] K. Jain, M. Zemel, and M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” IEEE. J. Solid-State Circuits 90, 1681-1688 (2002).
[27] M. Antoni, W. Singer, J. Schultz, J. Wangler, I. E. Sanz, and B. Kruizinga, “Illumination optics design for EUV lithography,” Proc. SPIE 4146, 25-34 (2000).
[28] S. H. Kuo, and C. F. Chen, “Design of direct LED backlighting based on an analytical method of uniform illumination,” J. Inf. Disp. 12, 1089-1096 (2016).
[29] S. H. Kuo, and C. F. Chen, “Design of a collimated UV-LED exposure unit based on light spread function method,” Appl. Opt. 56, 5542-5549 (2017).
[30] I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45, 2265-2272 (2006).
[31] I. Moreno, and R. I. Tzonchev, “Effects on illumination uniformity due to dilution on arrays of LEDs,” Proc. SPIE 5529, 268-275 (2004).
[32] W. A. Parkyn, and D. G. Pelka, “Illuminance-mapping linear lenses for LEDs,” Proc. SPIE 5942, 59420L (2005).
[33] S. Suzuki, and Y. Matsumoto, “Lithography with UV-LED array for curved surface structure,” Microsyst. Technol. 14, 1291-1297 (2008).
[34] A. J. W. Whang, Y. Y. Chen, and Y. T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Inf. Disp. 5, 94-103 (2009).
[35] D. Wu, K. Wang, and V. G. Chigrinov, “Feedback reversing design method for uniform illumination in LED backlighting with extended source,” J. Inf. Disp. 10, 43-48 (2013).
[36] R. Wu, Z. Zheng, H. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51, 2257-2263 (2012).
[37] 傅偉庭,高性能UV LED 曝光系統光學設計與模擬,國立中興大學精密工程研究所碩士論文,中華民國一百零二年。
[38] P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illuminationusing microlens arrays,” Proc. SPIE 59420 (2005).
[39] R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968-20978 (2010).
[40] S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52, 125101 (2013).
[41] T. Chen, T. Wang, Z. Wang, T. Zuo, J. Wu, and S. Liu, “Microlens fabrication using an excimer laser and the diaphragm method,” Opt. Express 17, 9733-9747 (2009).
[42] C. C. Chiu, and Y. C. Lee, “Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method,” Opt. Express 20, 5922-5935 (2012).
[43] X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377-381 (1986).
[44] Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56, 9308-9314 (2017).
[45] Y. Jin, A. Hassan, and Y. Jiang, “Freeform microlens array homogenizer for excimer laser beam shaping,” Opt. Express 24, 24846-24858 (2016).
[46] H. W. Lee, and B. S. Lin, “Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array,” Opt. Express 20, A788-A798 (2012).
[47] X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative down-size molding with glass sintering technology,” Opt. Express 20, 6135-6145 (2012).
[48] F. Nikolajeff, S. Hård, and B. Curtis, “Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing,” Appl. Opt. 36, 8481-8489 (1997).
[49] T. R. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109-120 (2003).
[50] F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15, 6218-6231 (2007).
[51] 孫慶成,光電工程概論,全華圖書股份有限公司,中華民國一百零一年。
[52] A. M. Colman, A Dictionary of Psychology, (Oxford University Press, UK, 2009).
[53] American National Standards Institute (ANSI), American National Standard for Audiovisual Systems-Electronic Projection-Fixed Resolution Projectors, (American National Standards Institute, USA, 1997).
[54] J. E. Greivenkamp, Field guide to geometrical optics, (Bellingham, USA, 2004).
[55] Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectronics Reliability 52, 889-893 (2012).
[56] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, and B. Glorieux, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Light 1, 1-17 (2014).
[57] Y. C. Lo, J. Y. Cai, M. S. Tasi, Z. Y. Tasi, and C. C. Sun, “Side-illuminating LED luminaires with accurate projection in high uniformity and high optical utilization factor for large-area field illumination,” Opt. Express 22, A365-A375 (2014).
[58] 韓明媛,以RGBLED為投影顯示光源之光學性能研究,國立中央大學光電科學與工程研究所碩士論文,中華民國九十七年。
[59] 鄭佳申,白光LED之一階與二階光學設計,國立中央大學光電科學與工程研究所碩士論文,中華民國九十七年。
[60] R. W. L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10, 484-511 (2018).
[61] J. Bernasconi, T. Scharf, U. Vogler, and H. P. Herzig, “High-power modular LED-based illumination systems for mask-aligner lithography,” Opt. Express 26, 11503-11512 (2018)
指導教授 楊宗勳 孫慶成(Tsung-Hsun Yang Ching-Cherng Sun) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明