參考文獻 |
[1] R. Karlicek, C. C. Sun, G. Zissis, and R. Ma, Handbook of advanced lighting technology, (Springer, Switzerland, 2017).
[2] E. J. Hansotte, E. C. Carignan, and W. D. Meisburger, “High speed maskless lithography of printed circuit boards using digital micromirrors,” Proc. of SPIE 7932, 793207 (2011).
[3] C. K. Huang, and J. G. Sung, “The application of UV-LEDs to printed circuit board process,” presented at Assembly and Circuits Technology Conference, Taipei, Taiwan, 21-23 October 2009.
[4] N. Pongprasert, Y. Sekozawa, S. Sugaya, and H. Gemma, “A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel,” Sci. Hortic. 130, 73-77 (2011)
[5] G. Q. Li, W. L. Wang, Z. Y. Huo, Y. Lu, and H. Y. Hu, “Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli,” Water. Res. 126, 134-143 (2017)
[6] A. Gross, F. Stangl, K. Hoenes, M. Sift, and M. Hessling, “Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide, ” Water 7, 4605-4621 (2015)
[7] K. Schindler, U. Leischner, C. Lopper, T. Striebel, P. Kaiser, and U. Schoembs, “High Intensity UV-LED Mask Aligner for Applications in Industrial Research,” MikroSystemTechnik 672-675 (2017).
[8] S. Nakamura, and S. F. Chichibu, Introduction to nitride semiconductor blue lasers and light emitting diodes, (CRC Press, USA, 2000).
[9] Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).
[10] Y. Muramoto, M. Kimura, and S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semicond. Sci. Technol. 29, 084004 (2014).
[11] LED LEDinside-2016 年紫外線LED 市場產值將成長至1.66 億, http://www.ledinside.com.tw/research/20160919-33136.html.
[12] K. Jain, M. Zemel, and M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” IEEE. Inst. Electr. Electron. Eng. 90, 1681-1688 (2002).
[13] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of nanostructures using a UV-based imprint technique,” Microelectron. Eng. 53, 233-236 (2000).
[14] A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuator. A. Phys. 73, 14-23 (1999).
[15] C. Bowker, A. Sain, M. Shatalov, and J. Ducoste, “Microbial UV fluence-response assessment using a novel UV-LED collimated beam system,” Water. Res. 45 (2011).
[16] Y. L. Cheng, M. L. Li, J. H. Lin, J. H. Lai, C. T. Ke, and Y. C. Huang, “Development of dynamic mask photolithography system,” presented at International Conference on Mechatronics, Taipei, Taiwan, 10-12 July 2005.
[17] Y. Li, P. Wu, Z. Luo, Y. Ren, M. Liao, L. Feng, Y. Li, and L. He, “Rapid fabrication of microfluidic chips based on the simplest LED lithography,” J. Micromech Microeng 25, 055020 (2015).
[18] K. Takahashi, and J. Setoyama, “A UV‐exposure system using DMD,” Electron Commun. Jpn. (Part II: Electronics) 83, 56-58 (2000).
[19] F. R. Zahi, S. J. Rizwi, S. K. Haq, and R. H. Khan, “Lowdose mercury toxicity and humanhealth,” Environ. Toxicol. Pharmacol. 20, 351-360 (2005).
[20] L. D. Hylanderand, and M. E. Goodsite, “Environmental costs of mercury pollution,” Sci. Total Environ. 368, 352-370 (2006).
[21] R. Dabeka, A. D. Mckenzie, D. S. Forsyth, and H. B. Conacher, “Survey of total mercury in some edible fish and shellfish species collected in Canada in 2002,” Food. Addit. Contam. 21, 434–440 (2004).
[22] R. M. Guijt, and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab. on a Chip 8, 1402-1404 (2008).
[23] M. N. Hasan, D. H. Dinh, H. L. Chien, and Y. C. Lee, “Maskless beam pen lithography based on integrated microlens array and spatial-filter array,” Opt. Eng. 56, 115104 (2017).
[24] S. Huang, M. Li, L. Wang, Y. Su, and Y. Liang, “Precise fabrication of large-area microstructures by digital oblique scanning lithography strategy and stage self-calibration technique,” Appl. Phys. Express 12, 096501 (2019).
[25] G. R. Baxter, J. Tesone, and G. Rivard, “Double-sided circuit board exposure machine and method with optical registration and material variation compensation,” US Patent (1994).
[26] K. Jain, M. Zemel, and M. Klosner, “Large-area high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” IEEE. J. Solid-State Circuits 90, 1681-1688 (2002).
[27] M. Antoni, W. Singer, J. Schultz, J. Wangler, I. E. Sanz, and B. Kruizinga, “Illumination optics design for EUV lithography,” Proc. SPIE 4146, 25-34 (2000).
[28] S. H. Kuo, and C. F. Chen, “Design of direct LED backlighting based on an analytical method of uniform illumination,” J. Inf. Disp. 12, 1089-1096 (2016).
[29] S. H. Kuo, and C. F. Chen, “Design of a collimated UV-LED exposure unit based on light spread function method,” Appl. Opt. 56, 5542-5549 (2017).
[30] I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45, 2265-2272 (2006).
[31] I. Moreno, and R. I. Tzonchev, “Effects on illumination uniformity due to dilution on arrays of LEDs,” Proc. SPIE 5529, 268-275 (2004).
[32] W. A. Parkyn, and D. G. Pelka, “Illuminance-mapping linear lenses for LEDs,” Proc. SPIE 5942, 59420L (2005).
[33] S. Suzuki, and Y. Matsumoto, “Lithography with UV-LED array for curved surface structure,” Microsyst. Technol. 14, 1291-1297 (2008).
[34] A. J. W. Whang, Y. Y. Chen, and Y. T. Teng, “Designing uniform illumination systems by surface-tailored lens and configurations of LED arrays,” J. Inf. Disp. 5, 94-103 (2009).
[35] D. Wu, K. Wang, and V. G. Chigrinov, “Feedback reversing design method for uniform illumination in LED backlighting with extended source,” J. Inf. Disp. 10, 43-48 (2013).
[36] R. Wu, Z. Zheng, H. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51, 2257-2263 (2012).
[37] 傅偉庭,高性能UV LED 曝光系統光學設計與模擬,國立中興大學精密工程研究所碩士論文,中華民國一百零二年。
[38] P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illuminationusing microlens arrays,” Proc. SPIE 59420 (2005).
[39] R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18, 20968-20978 (2010).
[40] S. L. Aristizabal, G. A. Cirino, A. N. Montagnoli, A. A. Sobrinho, J. B. Rubert, and R. D. Mansano, “Microlens array fabricated by a low-cost grayscale lithography maskless system,” Opt. Eng. 52, 125101 (2013).
[41] T. Chen, T. Wang, Z. Wang, T. Zuo, J. Wu, and S. Liu, “Microlens fabrication using an excimer laser and the diaphragm method,” Opt. Express 17, 9733-9747 (2009).
[42] C. C. Chiu, and Y. C. Lee, “Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method,” Opt. Express 20, 5922-5935 (2012).
[43] X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377-381 (1986).
[44] Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56, 9308-9314 (2017).
[45] Y. Jin, A. Hassan, and Y. Jiang, “Freeform microlens array homogenizer for excimer laser beam shaping,” Opt. Express 24, 24846-24858 (2016).
[46] H. W. Lee, and B. S. Lin, “Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array,” Opt. Express 20, A788-A798 (2012).
[47] X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, “Surface-structured diffuser by iterative down-size molding with glass sintering technology,” Opt. Express 20, 6135-6145 (2012).
[48] F. Nikolajeff, S. Hård, and B. Curtis, “Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing,” Appl. Opt. 36, 8481-8489 (1997).
[49] T. R. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109-120 (2003).
[50] F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15, 6218-6231 (2007).
[51] 孫慶成,光電工程概論,全華圖書股份有限公司,中華民國一百零一年。
[52] A. M. Colman, A Dictionary of Psychology, (Oxford University Press, UK, 2009).
[53] American National Standards Institute (ANSI), American National Standard for Audiovisual Systems-Electronic Projection-Fixed Resolution Projectors, (American National Standards Institute, USA, 1997).
[54] J. E. Greivenkamp, Field guide to geometrical optics, (Bellingham, USA, 2004).
[55] Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a Butterfly lens for a street light based on a double-cluster LED,” Microelectronics Reliability 52, 889-893 (2012).
[56] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, and B. Glorieux, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Light 1, 1-17 (2014).
[57] Y. C. Lo, J. Y. Cai, M. S. Tasi, Z. Y. Tasi, and C. C. Sun, “Side-illuminating LED luminaires with accurate projection in high uniformity and high optical utilization factor for large-area field illumination,” Opt. Express 22, A365-A375 (2014).
[58] 韓明媛,以RGBLED為投影顯示光源之光學性能研究,國立中央大學光電科學與工程研究所碩士論文,中華民國九十七年。
[59] 鄭佳申,白光LED之一階與二階光學設計,國立中央大學光電科學與工程研究所碩士論文,中華民國九十七年。
[60] R. W. L. Jiang, and M. Ricketts, “Nonimaging optics: a tutorial,” Adv. Opt. Photonics 10, 484-511 (2018).
[61] J. Bernasconi, T. Scharf, U. Vogler, and H. P. Herzig, “High-power modular LED-based illumination systems for mask-aligner lithography,” Opt. Express 26, 11503-11512 (2018) |