參考文獻 |
1. S. F. B. Morse, Samuel FB Morse (Cambridge University Press, Cambridge, 2014).
2. E. S. Grosvenor, and M. Wesson, Alexander Graham Bell (New Word City, Boston, 2016).
3. R. W. Burns, John Logie Baird, Television Pioneer (Iet, 2000).
4. B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts, and Wolff, “The past and future history of the Internet,” Commun. ACM 40, 102-108 (1997).
5. Y.-W. Yu, Y.-C. Chen, K.-H. Huang, C.-Y. Cheng, T.-H. Yang, S.-H. Lin, and C. C. Sun, “Reduction of phase error on phase-only volume-holographic disc rotation with pre-processing by phase integral,” Opt. Express 28, 28573-28583 (2020).
6. Max Roser, “1990年至2016年網路使用總人口數統計表,” https://ourworldindata.org/internet#the-rise-of-social-media
7. 歷代通訊系統規格介紹, http://net-informations.com/q/diff/generations.html
8. 第五代通訊系統規格介紹, https://www.sicomtesting.com/en/blog/dal-1g-al-5g-il-passato-e-il-futuro-degli-standard-gsm-umts-hspa-ed-lte/
9. Shanmugam, “Digital and analog communication systems,” NASA STI/Recon Technical Report A 80, 23225 (1979).
10. 第二代通訊系統規格介紹, https://en.wikipedia.org/wiki/2G
11. 第三代通訊系統規格介紹, https://en.wikipedia.org/wiki/3G
12. J. Vcelak, T. Javornik, J. Sykora, G. Kandus, and S. J. E. R. Plevel, “Multiple Input Multiple Output wireless systems,” Electrotechnical Review, 70, 234-239 (2003).
13. M. Ding, Multiple-input multiple-output wireless system designs with imperfect channel knowledge (Queen′s University, 2008).
14. Y. G. Li, and G. L. Stuber, Orthogonal frequency division multiplexing for wireless communications (Springer Science & Business Media, 2006).
15. S. B. Weinstein, “The history of orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 47, 26-35 (2009).
16. E. Björnson, L. Sanguinetti, J. Hoydis, and Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?” IEEE Trans. Wirel. Commun. 14, 3059-3075 (2015)
17. P. Wang, Y. Li, L. Song, and Vucetic, “Multi-gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks,” IEEE Commun. Mag. 53, 168-178 (2015).
18. J. Wells, Multi-gigabit microwave and millimeter-wave wireless communications (Artech House, 2010).
19. D. Khandal, Jain, and C. Technology, “Li-fi (light fidelity): The future technology in wireless communication,” IJICT 4, 1687-1694 (2014).
20. A. Chakraborty, T. Dutta, S. Mondal, Nath, and M. Studies, “Latest advancement in Light Fidelity (Li-Fi) Technology,” International Journal of Advance Research in Computer Science and Management Studies 5, 12 (2017).
21. “Introduction of Li-Fi,” https://en.wikipedia.org/wiki/Li-Fi
22. C.-Y. Li, H.-H. Lu, T.-C. Lu, W.-S. Tsai, B.-R. Chen, C.-A. Chu, C.-J. Wu, and C.-H. Liao, “A 100m/40Gbps 680-nm VCSEL-based LiFi transmission system,” in CLEO: Science and Innovations (Optical Society of America2016), p. SW1F. 5.
23. 第五、六代通訊系統規格介紹與比較,https://www.qualcomm.com/5g/what-is-5g
24. R. Noé, Essentials of modern optical fiber communication (Springer, 2010).
25. S. Gupta, Textbook on optical fiber communication and its applications (PHI Learning Pvt. Ltd., 2018)
26. Y. Huang, E.-L. Hsiang, M.-Y. Deng, L. S. Wu, and Applications, “Mini-LED, Micro-LED and OLED displays: Present status and future perspectives,” Light Sci. Appl. 9, 1-16 (2020)
27. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. J. O. e. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25, 1193-1201 (2017).
28. X. Liu, R. Lin, H. Chen, S. Zhang, Z. Qian, G. Zhou, X. Chen, X. Zhou, L. Zheng, and R. J. A. P. Liu, “High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays,” ACS Photonics 6, 3186-3195 (2019).
29. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, and I. H. J. P. R. White, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5, A35-A43 (2017).
30. S. R. Gottesman, and E. E. Fenimore,“New family of binary arrays for coded aperture imaging,”Appl. Opt. 28, 4344-4352 (1989).
31. S. Hojjatoleslami, M. Avanaki, and Podoleanu, “Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm,” Appl. Opt. 52, 5663-5670 (2013).
32. W. H. Richardson,“Bayesian-Based Iterative Method of Image Restoration,”J. Opt. Soc. Am. 62, 55-59 (1972).
33. L. B. Lucy,“An iterative technique for the rectification of observed distributions,”The Astronomical Journal 79, 745 (1974).
34. Zeiss Microscopy, “What Affects the Point Spread Function ?,” https://bitesizebio.com/22166/a-beginners-guide-to-the-point-spread-function-2/
35. T. R. Corle and G. S. Kino, “Introduction of the Point Spread Function ,” https://www.sciencedirect.com/topics/engineering/point-spread-function
36. X. Ding, Y. Fu, J. Zhang, Y. Hu, and S. Fu, “An Approach to Measuring the Point Spread Function of the Confocal Raman Microscope,” Applied Spectroscopy 74, 1230-1237 (2020).
37. P. Mouroulis, and J. Macdonald, Geometrical optics and optical design (Oxford University Press, USA, 1997).
38. E. E. Fenimore, and Cannon, “Coded aperture imaging with uniformly redundant arrays,” Applied optics, 17, 337-347 (1978).
39. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,” Applied optics 45, 2965-2974 (2006).
40. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 2002)
41. Baraniuk, “Compressive sensing [lecture notes],” IEEE signal processing magazine 24, 118-121 (2007).
42. “Introduction of Complementary metal–oxide–semiconductor,” https://en.wikipedia.org/wiki/CMOS
43. S. Hassani, “Dirac delta function,” in Mathematical methods (Springer, 2009) , 139-170.
44. “Dirac delta function,” https://en.wikipedia.org/wiki/Dirac_delta_function
45. “Introduction to the Electromagnetic Spectrum,” https://science.nasa.gov/ems/01_intro
46. R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” Journal of Lightwave Technology 37, 2418-2424 (2019).
47. S. Motwani, “Tactical Drone for Point-to-Point data delivery using Laser-Visible Light Communication (L-VLC),” in 2020 3rd International Conference on Advanced Communication Technologies and Networking (CommNet)(IEEE2020), pp. 1-8.
48. L. Wang, Z. Wei, C.-J. Chen, L. Wang, H. Fu, L. Zhang, K.-C. Chen, M.-C. Wu, Y. Dong, and Z. J. P. R. Hao, “1.3 GHz EO bandwidth GaN-based micro-LED for multi-gigabit visible light communication,” Photonics Res. 9, 792-802 (2021).
49. S. Zhang, Z. Wei, Z. Cao, K. Ma, C.-J. Chen, M.-C. Wu, Y. Dong, and H. Y. Fu, “A High-Speed Visible Light Communication System Using Pairs of Micro-size LEDs,” IEEE Photonics Technol. Lett. (2021).
50. R. Karlicek, C. C. Sun, G. Zissis, and R. Ma, Handbook of advanced lighting technology (Springer, 2017).
51. C.-L. Liao, Y.-F. Chang, C.-L. Ho, and M. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34, 611-613 (2013).
52. V. N. Mahajan, Aberration theory made simple (SPIE Press, 1991). |