博碩士論文 107226038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.131.37.193
姓名 胡毓堅(Yu-Jian Hu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 照明光源的色溫及晝夜節律刺激值對室內靜態工作專注力之影響研究
(The influence of lighting sources with different correlated color temperature and different circadian stimulus values on user’s attention of indoor static work)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 以往的照明著重在製造成本、發光效率、色彩表現等等,沒有特別注意光源對於人體的危害或影響,直到照明影響生理回饋的研究被提出後,人們才開始注重光譜的色溫、照度和演色性,因此探討不同照明因子對於使用者的生理表現以及身體狀況,成為人因工程中相當重要的課題。
本研究以模擬辦公室內環境為實驗空間,評估光譜可調式光源箱所設計不同色溫或不同晝夜節律刺激值的照明情境,對使用者的生心理影響和提升精神狀況之成效。實驗招募受試者於模擬辦公室內進行靜態文書作業,同時延續先前團隊既有的照明人因評估技術,並加以改進實驗流程、測驗內容與問卷評估。本研究使用腦波儀進行腦波量測作為生理回饋的客觀評估工具,受試者問卷作為主觀評估工具,並利用Matlab撰寫程式進行後續的主客觀數據分析,整合上述所有內容,以此來建立新的照明人因評估。
實驗中使用光源照明分析控制軟體、腦波儀、光譜可調式光源箱以及問卷評估等多項工具。使用光源照明分析控制軟體搭配光譜可調式光源箱,在固定工作面照度為500 lx的條件下,設計出九種不同色溫不同晝夜節律刺激值(Circadian stimulus, CS)的光源光譜,並選擇其中五種進行了兩個實驗,實驗一研究目的為比較不同晝夜節律刺激值的影響,使用相同色溫5000 K,不同CS值0.25、0.35、0.45;實驗二研究目的為比較不同色溫的影響,相同CS值0.45,不同色溫3000、4000、5000 K。
腦波儀負責量測受試者於LED燈箱調控情境下的腦波訊號,並且匯入MATLAB軟體進行數據分析,其中包含快速傅立葉轉換(Fast Fourier transform, FFT)、經驗模態分解法(Empirical mode decomposition, EMD)、希爾伯特轉換(Hilbert transform, HT)、機率密度函數(Probability density function, PDF)以及接收者操作特徵曲線(Receiver operating characteristic curve, ROC curve)等運算,最後將接收者操作特徵曲線的曲線下面積(Area under the curve, AUC)依情境排列作為客觀指標;以問卷評估所得之評分,亦依情境排列後成為主觀指標。主客觀指標分別匯入SPSS統計軟體進行變異數分析,檢視指標於三種情境之間是否具顯著差異,以進一步探討主客觀指標的情境狀況。
研究結果顯示在主客觀指標方面,實驗一於相同色溫不同晝夜節律刺激值的光譜下,兩者具有相近之處,且情境一(色溫為5000 K,晝夜節律刺激值為0.25)有較好的覺醒程度;然而實驗二於相同晝夜節律刺激值不同色溫的光譜下,受試者評估問卷上的光源亮暗程度於情境之間具有顯著差異,但受試者腦波的不同頻段於情境之間都沒有顯著差異。期許基於現階段的實驗結果,在未來的其它照明情境中,主客觀的實驗結果能夠取得更出色的成果。
摘要(英) In the past, people mainly focused on the manufacturing cost, luminous efficiency and color performance of lighting and did not pay special attention to the harm or impact of light sources on the human body. It was not until the research on the effect of lighting on physiological feedback was proposed that people began to pay attention to the color temperature, illuminance and color rendering of the lighting spectrum. Therefore, the manipulation of different lighting factors for the user’s physiological performance and physical condition has become a very important topic in human factors engineering.
This study uses a simulated office environment as an experimental space to evaluate the effects of different lighting spectra on user’s attention level. Lightingscenarios with different correlated color temperature (CCT) or different circadianstimulus (CS) were designed by using the spectrum adjustable light sources. Participants were recruited to perform the static paperwork in the office, while their brainwaves were measured as an objective evaluation. A questionnaire was used as a subjective evaluation tool, and codes written in the MATLAB environment were used for subsequent subjective and objective data analysis.
Nine lighting spectra were designed with 3 levels of CCT and 3 levels of CS, while the task illuminance was fixed at 500 lx. Then, we chose five spectra to conduct two experiments. The first experiment is to investigate the influence of circadian stimulus, and tested three lighting scenarios with a fixed CCT at 5000 K and different CS values at 0.25, 0.35, and 0.45. The second experiment is to compare the effects of different color temperatures, and tested three lighting scenarios with the same CS at 0.45 and different CCT at 3000, 4000, and 5000 K.The collected brainwave signals underwent several processes, including Fast Fourier transform (FFT), empirical mode decomposition, Hilbert transform, probability density function and receiver operating characteristic curve (ROC curve). Finally, the areas under the curves (AUCs) were calculated to be the objective indicators of binary classifications. On the other hand, the scores of the questionnaires were arranged in the order of the lighting environments, and then became the subjective indicators. Both of them were collected into SPSS for the analysis of variance (ANOVA) to check if there was any significance among the three lighting environments, so as to further explore if there were any correlationsbetween the subjective and objective indicators.
The results show that the first experiment (with the same CCT and different CS values) has similarities between the subjective and objective indicators, and scenario one (CCT at 5000 K and CS at 0.25) relates to better alertness level. In the second experiment (with the same CS and different CCTs), the light-source brightness in the questionnaire assessment has significant differences between thelighting environments, though the analysis of brainwaves in several frequency bands shows no significance. The current experimental design and data analysis method shall be applicable to test other lighting scenarios in the future.
關鍵字(中) ★ 照明
★ 晝夜節律刺激
★ 相關色溫
★ 腦電圖
★ 經驗模態分解法
★ 希爾伯特轉換
關鍵字(英) ★ lighting
★ circadian stimulus
★ correlated color temperature
★ EEG
★ empirical mode decomposition
★ Hilbert transform, probability density function
論文目次 摘要 viii
Abstract x
致謝 xii
目錄 xiv
圖目錄 xix
表目錄 xxiv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 論文架構 4
1-3-1 研究假設 4
1-3-2 研究限制 4
1-3-3 研究方法與步驟 5
第二章 文獻探討 7
2-1 照明的生理影響 7
2-1-1 非視覺系統 9
2-1-2 晝夜節律刺激值 11
2-2 視覺疲勞判別 14
2-2-1 視覺疲勞的主觀評估 17
2-3 生理回饋與腦波 19
2-3-1 腦電圖 20
2-3-2 腦電位量測 22
2-3-3 腦波資訊分析 26
第三章 研究方法與步驟 27
3-1 實驗設計 27
3-1-1 心理學實驗設計 28
3-1-2 視力檢查與專注力前測實驗 29
3-1-3 照明實驗一 31
3-1-4 照明實驗二 33
3-2 實驗設備 34
3-2-1 光譜可調式光源箱 34
3-2-2 光源照明分析控制軟體 35
3-2-3 晝夜節律刺激計算器 37
3-2-4 色彩照度計 38
3-2-5 腦波儀 39
3-2-6 視力檢查儀 40
3-3 照明實驗一 41
3-3-1 實驗環境配置 41
3-3-2 實驗流程 47
3-3-3 實驗內容 48
3-4 照明實驗二 51
3-5 實驗資料分析 52
3-5-1 傅立葉轉換 53
3-5-2 快速傅立葉轉換 54
3-5-3 希爾伯特-黃轉換 55
3-5-4 經驗模態分解法 55
3-5-5 希爾伯特轉換 60
3-5-6 頻帶功率與機率密度函數 63
3-5-7 接受者操作特徵曲線 63
3-5-8 重複量數變異數分析法 66
第四章 實驗結果與討論 69
4-1 實驗結果 71
4-1-1 照明實驗一 72
4-1-2 照明實驗二 81
4-1-3 傅立葉轉換與希爾伯特-黃轉換結果討論 87
4-1-4 照明實驗總結 87
4-1-5 主觀問卷評估 91
4-2 主客觀結果討論 95
第五章 結論與未來展望 97
5-1 結論 97
5-2 未來展望 99
參考文獻 100
附錄一 中文閱讀測驗內容範例 104
附錄二 主觀評估情境體驗問卷 107
附錄三 臺灣大學研究倫理審查核可證明書 109
參考文獻 [1] H. R. Taylor et al. The long-term effects of visible light on the eye. Archives of Ophthalmology, 110(1):99–104, 1992.
[2] K. E. West et al. Blue light from light-emitting diodes elicits a dosedependent suppression of melatonin in humans. Journal of Applied Physiology, 110(3):619–626, 2011.
[3] W. J. M. van Bommel. Non-visual biological effect of lighting and the practical meaning for lighting for work. Applied Ergonomics, 37(4):461–466, 2006.
[4] W. J. M. van Bommel and G. J. van den Beld. Lighting for work: a review of visual and biological effects. Lighting Research and Technology, 36(4):255– 266, 2004.
[5] 蘇慧貞,「室內環境品質及生物性危害與防治」,2007病態建築診斷機制教育宣導講習會,台北,2007年11月。
[6] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局, 2012.
[7] M. S. Mott et al. Illuminating the effects of dynamic lighting on student learning. SAGE Open, 2, 2012.
[8] Koninklijke Philips Electronics N.V., Feel good, learn better with SchoolVision, 2011.
[9] I. Hirotake et al. Intellectual productivity under task ambient lighting. Lighting Research and Technology, 50, 2016.
[10] D. M. Berson, F. A. Dunn, and M. Takao. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557):1070–1073, 2002.
[11] D. C. Fernandez et al. Light affects mood and learning through distinct retina-brain pathways. cell, 175(1):71–84.e18, 2018.
[12] P. Khademagha et al. Implementing non-image-forming effects of light in the built environment: A review on what we need. Building and Environment, 108(1):263–272, 2016.
[13] LumosTech. The science behind adjusting your circadian rhythm with light.Source: https://reurl.cc/g7qE3b.
[14] C. Lok. Vision science: Seeing without seeing. Nature, 469:284–285, 2011.
[15] I. Provencio, G. Jiang, W. De Grip, W. Hayes, and M. Rollag. Melanopsin: an opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America, 95(1): 340-345, 1998.
[16] M. S. Rea, M. G. Figueiro, J. D. Bullough, and A. Bierman. A model of phototransduction by the human circadian system. Brain Research Reviews, 50(2): 213-228, 2005.
[17] M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner. Modelling the spectral sensitivity of the human circadian system. Lighting Research and Technology, 44(4): 386-396, 2012.
[18] M.S. Rea and M.G. Figueiro, Light as a circadian stimulus for architectural lighting, Lighting Research Center, Rensselaer Polytechnic Institute.
[19] M. S. Islam, R. Dangol, M. Hyva′rinen, P. Bhusal, M. Puolakka, and L. Halonen. User acceptance studies for LED office lighting: Lamp spectrum, spatial brightness and illuminance. Lighting Research & Technology, 47:54-79, 2015.
[20] M. Wang, M. R. Luo, S. Zheng, J. Qiang, and H. Wang. Influence of circadian stimulus and colour temperature on children’s study performance and fatigue. CIE x045:2018, Proceedings of CIE 2018: Topical Conference on Smart Lighting, pp. 6-10, Taipei, Taiwan, 2018.
[21] C. W. Lin, F. M. Hsu, C. J. Chou, H. S. Chen, and M. R. Luo. Office lighting design in consideration of eye fatigue and task performance. CIE x045:2018, Proceedings of CIE 2018: Topical Conference on Smart Lighting, pp. 19-28, Taipei, Taiwan, 2018.
[22] CS calculator. Source: https://www.lrc.rpi.edu/cscalculator/
[23] 網路資料,取自:https://www.lrc.rpi.edu/healthyliving/#section-whatIsCircadianLighting
[24] J.-H. Chu. CHAPTER1 認識色彩. Source: https://reurl.cc/Wd2Vge.
[25] J. R. Wilson and E. N. Corlett. Evaluation of Human Work, 2nd Edition. Taylor and Francis, 1995.
[26] H. Yoshitake. Relations between the symptoms and the feeling of fatigue. Ergonomics, 14(1):175–186, 1971.
[27] R. Likert. A technique for the measurement of attitudes. Archives of psychology.Columbia university, 1932.
[28] M. A. Robinson. Using multi-item psychometric scales for research and practice in human resource management. Human Resource Management, 57(3):739–750, 2018.
[29] S. Mack et al. Principles of Neural Science, Fifth Edition. Principles of Neural Science. McGraw-Hill Education, 2013.
[30] H. H. Suzana. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3:31, 2009.
[31] Human EEG with prominent alpha rhythm. Source: https://reurl.cc/QdvOoZ.
[32] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7:143–158, 2016.
[33] G. Buzs´aki. Rhythms of the Brain. Oxford ; New York : Oxford University Press, 2006.
[34] B. McDermott et al. Gamma Band Neural Stimulation in Humans and the Promise of a New Modality to Prevent and Treat Alzheimer’s Disease. Journal of Alzheimer’s Disease, 65(2):363–392, 2018.
[35] H. Marzbani, H. R. Marateb, and M. Mansourian. Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience Journal, 7:143–158, 2016.
[36] A. B. Usakli. Improvement of EEG signal acquisition: An electrical aspect for state of the art of front end. Computational Intelligence and Neuroscience, 2010, 2009.
[37] G. H. Klem et al. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and clinical neurophysiology. Supplement, 52:3–6, 1999.
[38] International 10-20 system for EEG. Source: https://reurl.cc/lVxMOA.
[39] K. A. Carlson. An Introduction to Statistics: An Active Learning Approach. SAGE Publications, 2016.
[40] Reader’s Digest Editors. Can You Spot the Difference in These 10 Pictures? Source: https://reurl.cc/r88xnr.
[41] LEDCube. Source: http://www.thouslite.com/PRODUCTS/16.html.
[42] NeuroSky. MindWave Mobile: User Guide, 2015.
[43] MindWave mobile. Source: https://reurl.cc/1x5pWD.
[44] 網路資料,取自:https://www.tcte.edu.tw/down_exam.php
[45] 網路資料,取自:https://www.ceec.edu.tw/
[46] 網路資料,取自:https://read01.com/7DA3N4.html#.WxZIoEiFNPY
[47] N. E. Huang et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454:903–995, 1998.
[48] Mr. Opengate. Time Series Analysis - Introduction to Stationary Time Series. Source: https://reurl.cc/ZO6zo3.
[49] 陳佑榮,「應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理」,國立中央大學,碩士論文,民國104年。
[50] 洪暉程,「總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用」,國立中央大學,碩士論文,民國97年。
[51] E. R. Girden. ANOVA: Repeated measures. Sage Publications, 1992.
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2021-9-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明