博碩士論文 108226021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.220.188.4
姓名 鍾億憲(Yi-Xian Zhong)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化矽微環形共振腔模擬與傳統紫外光製程之研究
(The study of simulation and conventional UV lithography fabrication of silicon nitride micro-resonator)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 微環形共振腔非線性效應與壓縮光之研究★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製
★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究
★ 耦合共振腔光波導頻寬優化研究★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究
★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究
★ 氮化矽微環型干涉儀製程與穿透頻譜調製★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究
★ 微環形共振腔耦合馬赫曾德爾干涉儀之研究★ 雙重曝光氮化矽環形共振腔製作與熱效應調製
★ 非對稱環形共振腔耦合與品質因子控制★ 奈米壓印製作環形共振腔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的主要內容為氮化矽波導組成微環形共振腔的模擬分析、製程與量測結果。其中模擬分析是針對設計不同錐度的傳輸波導(bus waveguide)從而增加耦合效應(coupling effect);在製程上本論文是以傳統的紫外光光刻技術加上正光阻反轉進行曝光、顯影,進而做出微環形共振腔;最後在量測上會量測氮化矽微環形共振腔之共振現象。
第一部分在模擬上會以時域有限差分(Finite-Difference Time-Domain, FDTD)的方法分析,首先會先分析傳輸波導中單面錐度(single-side taper)與雙面錐度(double-side taper),不同錐度寬度(taper width)下其橫向電場模態(transverse electric mode, TE)分佈,並且在不同錐度長度(taper length),固定錐度寬度,探討波導傳播損耗,最後在不同的錐度寬度、間隙(gap)、環形波導半徑(ring-waveguide radius)的情況下,分析其耦合效應。
第二部分在製程上由於傳統紫外光光刻技術最大的問題是曝光解析度的問題,所以會以接觸式曝光的情況下,改變曝光時間,觀察光罩上波導寬度、間隙與顯影後的波導寬度、間隙差異;我們特別在光罩上設計正光阻區、負光阻區,並選擇AZ5214光阻液當作製程光阻,由於AZ5214光阻液本身為正光阻,加上通過反轉曝光的方法能達到負光阻的效果,所以能在光罩的正光阻區與負光阻區完成曝光,最後分析兩者的差別。
第三部分在量測上會量測氮化矽微環形共振腔的共振現象,並且分析其自由光譜範圍(free spectral range),最後擬合模擬求出本質品質因數(intrinsic quality-factor)。
最後部分會探討其未來發展,在紫外光光刻上,此章節會利用雙重圖形(double patterning)避免干涉現象,在製程上做出共振腔具有亞微米解析度的耦合間隙。
摘要(英) This thesis discusses the simulation analysis, waveguide fabrication, and measurement of silicon nitride micro-resonators. The simulation analysis is aimed at designing different tapered-bus waveguides to increase the coupling effect; for fabrication, this thesis addresses the conventional ultraviolet lithography technology with reverse baking of a positive photoresist for exposure and development. Finally, the cavity resonance of the silicon nitride micro-resonator will be measured and discussed.
First, we simulate waveguide propagation by the method of Finite-Difference Time-Domain. First, the fundamental transverse electric waveguide mode of the single-side-tapered and double-side-tapered bus waveguide will be analyzed under different taper widths and taper lengths. We will both analyze the waveguide propagation loss, and the coupling between waveguide and resonators under different taper widths, gaps, and resonator radius.
Second, we study the micro-resonator fabrication with conventional ultraviolet (UV) lithography, which typically has the exposure resolution limited by 1 μm. With contact exposure, the exposure time will be discussed and the fabrication optimization for waveguide width and gap will be given. In this thesis, we design both a positive photoresist region and a negative photoresist region on the mask. A positive photoresist- AZ5214 is selected to pattern the waveguide when it can also be served as a negative photoresist by the method of reverse baking. We will discuss the patterned waveguides on both regimes.
In the third part, the cavity resonance of the fabricated silicon nitride micro- resonator will be evaluated in the wavelength-dependent transmission measurement; and the corresponding free spectral range will be analyzed. We will also show the measured intrinsic quality-factor for the resonators.
Last, to overcome the lithography limitation of UV patterning and enhance the coupling between waveguide and resonators, double patterning will be introduced to avoid the optical interference during lithography. The fabricated resonator shows submicron resolution for the coupling gap.
關鍵字(中) ★ 氮化矽
★ 微諧振器
★ 錐形波導
★ 紫外光光刻
關鍵字(英) ★ Silicon nitride
★ micro-resonator
★ taper waveguide
★ UV lithography
論文目次 第一章緒論 P.1
1-1 矽光子技術背景 P.1
1-2 氮化矽波導特性 P.3
1-3研究動機 P.5
1-4 論文架構 P.6
第二章波導共振腔耦合(waveguide-resonator coupling)模擬分析 P.7
2-1 設計原理 P.7
2-2時域有限差分法(Finite-Difference Time-Domain, FDTD)原理 P.10
2-3模擬結果與分析 P.12
2-3.1單面錐度與雙面錐度結構、原理 P.12
2-3.2傳輸波導結構模擬設計 P.13
2-3.3單面錐度與雙面錐度的TE模態分佈 P.14
2-3.4波導傳播損耗對於不同的椎度長度 P.16
2-3.5單面錐度與雙面錐度耦合效應 P.18
2-4 討論 P.23
第三章氮化矽微環形共振腔製程 P.24
3-1 紫外光光刻技術 P.24
3-2光罩設計 P.25
3-3製程流程 P.29
3-3.1清洗晶圓片 P.30
3-3.2氧化矽沉積 P.31
3-3.3氮化矽沉積 P.33
3-3.4 光刻製程 P.35
3-3.5蝕刻 P.39
3-3.6光阻去除 P.40
3-4 AZ-5214E正光阻區曝光流程 P.41
3-4.1 清洗晶片 P.42
3-4.2 光阻塗佈 P.43
3-4.3 光刻步驟 P.44
3-4.4波導檢驗 P.45
3-4.5結果 P.45
3-5 AZ-5214E負光阻區曝光流程 P.48
3-5.1 清洗晶片 P.48
3-5.2 光阻塗佈 P.49
3-5.3光刻步驟 P.49
3-5.4波導檢驗 P.51
3-5.5結果 P.51
3-6討論 P.56
第四章量測分析 P.58
4-1 氮化矽波導共振原理 P.58
4-1.1光環共振器(optical ring resonator) P.58
4-1.2品質因數(Q factor) P.59
4-2 波導損耗量測架構與步驟 P.60
4-2.1波導損耗量測架構 P.60
4-2.2波導損耗量測步驟 P.61
4-3穿透光譜(transmission spectrum)量測分析 P.63
4-3.1量測尺寸 P.63
4-3.2穿透光譜(transmission spectrum)量測結果 P.64
4-4 討論 P.68
第五章未與總結 P.69
5-1 雙重圖形(double-patterning) P.69
5-2 總結 P.71
參考資料 P.72
參考文獻 1]Babani, S., et al. "Comparative study between fiber optic and copper in communication link." Int. J. Tech. Res. Appl 2.2 (2014): 59-63.
[2]https://en.wikipedia.org/wiki/Fiber-optic_communication
[3]https://www.slideshare.net/pradeepsinngh/foc-38785597
[4]https://en.wikipedia.org/wiki/Silicon_on_insulator
[5]王成宇. "矽光波導微環形共振腔元件之設計與分析." 中山大學光電工程研究所學位論文 (2014): 1-117.
[6]https://refractiveindex.info/?shelf=main&book=Si&page=Aspnes
[7]Baets, Roel, et al. "Silicon Photonics: silicon nitride versus silicon-on-insulator." Optical Fiber Communication Conference.Optical Society of America, 2016.
[8]Picqué, Nathalie, and Theodor W. Hänsch. "Frequency comb spectroscopy." Nature Photonics 13.3 (2019): 146-157.
[9]https://en.wikipedia.org/wiki/Amorphous_silicon
[10]Dai, Daoxin, et al. "Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides." IEEE photonics technology letters 21.4 (2009): 254-256.
[11]Feng, Shaoqi, et al. "Silicon photonics: from a microresonator perspective." Laser & photonics reviews 6.2 (2012): 145-177.
[12]Li, Qing, et al. "Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform." Optics express 21.15 (2013): 18236-18248.
[13]Zhang, Yuguang, et al. "Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide." Optics letters 43.7 (2018): 1586-1589.
[14]Chembo, Yanne K. "Kerr optical frequency combs: theory, applications and perspectives." Nanophotonics 5.2 (2016): 214-230.
[15]Xiao, Shijun, et al. "Modeling and measurement of losses in silicon-on-insulator resonators and bends." Optics Express 15.17 (2007): 10553-10561.
[16]Xue, Xiaoxiao, et al. "Microresonator Kerr frequency combs with high conversion efficiency." Laser & Photonics Reviews 11.1 (2017): 1600276.
[17]Pfeiffer, Martin HP, et al. "Coupling ideality of integrated planar high-Q microresonators." Physical Review Applied 7.2 (2017): 024026.
[18]Xuan, Yi, et al. "High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation." Optica 3.11 (2016): 1171-1180.
[19]Hosseini, Ehsan Shah, et al. "Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths." Optics express 18.3 (2010): 2127-2136.
[20]Spencer, Daryl T., et al. "Integrated waveguide coupled Si 3 N 4 resonators in the ultrahigh-Q regime." Optica 1.3 (2014): 153-157.
[21]https://en.wikipedia.org/wiki/Finite-difference_time-domain_method
[22]http://www.cybernet-ap.com.tw/zh.php?m=743&t=71
[23]Ren, Guanghui, et al. "Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber." Optics Communications 284.19 (2011): 4782-4788.
[24]https://en.wikipedia.org/wiki/Photolithography
[25]https://en.wikipedia.org/wiki/Electron-beam_lithography
[26]https://en.wikipedia.org/wiki/Optical_ring_resonators
[27]Akhavan, Hooman. "Linearity of the optical micro-resonator-based modulators."Passive Components and Fiber-based Devices V. Vol. 7134.International Society for Optics and Photonics, 2008.
[28]Olszyna, Mateusz, et al. "Label‐Free Bioanalysis Based on Low‐Q Whispering Gallery Modes: Rapid Preparation of Microsensors by Means of Layer‐by‐Layer Technology." Advanced Functional Materials 29.2 (2019): 1805998.
[29] Xie, Xiaobo, et al. "Linearized mach-zehnder intensity modulator." IEEE Photonics Technology Letters 15.4 (2003): 531-533.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明